BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38090711)

  • 21. Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum.
    Wu W; Zhang Y; Liu D; Chen Z
    Metab Eng; 2019 Mar; 52():77-86. PubMed ID: 30458240
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The flavohaemoprotein hmp maintains redox homeostasis in response to reactive oxygen and nitrogen species in Corynebacterium glutamicum.
    Jiang Z; Guan J; Liu T; Shangguan C; Xu M; Rao Z
    Microb Cell Fact; 2023 Aug; 22(1):158. PubMed ID: 37596674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering
    Sasaki Y; Eng T; Herbert RA; Trinh J; Chen Y; Rodriguez A; Gladden J; Simmons BA; Petzold CJ; Mukhopadhyay A
    Biotechnol Biofuels; 2019; 12():41. PubMed ID: 30858878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of ʟ-ornithine production in recombinant Corynebacterium glutamicum S9114 by cg3035 overexpression and manipulating the central metabolic pathway.
    Zhang B; Yu M; Wei WP; Ye BC
    Microb Cell Fact; 2018 Jun; 17(1):91. PubMed ID: 29898721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo.
    Moritz B; Striegel K; De Graaf AA; Sahm H
    Eur J Biochem; 2000 Jun; 267(12):3442-52. PubMed ID: 10848959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochemical and molecular characterization of a novel porphobilinogen synthase from Corynebacterium glutamicum.
    Zhu D; Wu C; Niu C; Li H; Ge F; Li W
    World J Microbiol Biotechnol; 2023 Apr; 39(6):165. PubMed ID: 37071336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Engineering the C4 pathway of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid].
    Wang L; Yan S; Yang T; Xu M; Zhang X; Shao M; Li H; Rao Z
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4314-4328. PubMed ID: 34984877
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering Corynebacterium glutamicum for the production of 2,3-butanediol.
    Radoš D; Carvalho AL; Wieschalka S; Neves AR; Blombach B; Eikmanns BJ; Santos H
    Microb Cell Fact; 2015 Oct; 14():171. PubMed ID: 26511723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid combinatorial rewiring of metabolic networks for enhanced poly(3-hydroxybutyrate) production in Corynebacterium glutamicum.
    Yim SS; Choi JW; Lee YJ; Jeong KJ
    Microb Cell Fact; 2023 Feb; 22(1):29. PubMed ID: 36803485
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Construction and application of a CRISPR/Cas9-assisted genomic editing system for Corynebacterium glutamicum.
    Yao C; Hu X; Wang X
    AMB Express; 2021 May; 11(1):70. PubMed ID: 34009533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improvement of the intracellular environment for enhancing l-arginine production of Corynebacterium glutamicum by inactivation of H
    Man Z; Rao Z; Xu M; Guo J; Yang T; Zhang X; Xu Z
    Metab Eng; 2016 Nov; 38():310-321. PubMed ID: 27474351
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Remodeling metabolism of Corynebacterium glutamicum for high-level dencichine production.
    Huang D; Wang X; Liu WB; Ye BC
    Bioresour Technol; 2023 Nov; 388():129800. PubMed ID: 37748563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum.
    Krömer JO; Wittmann C; Schröder H; Heinzle E
    Metab Eng; 2006 Jul; 8(4):353-69. PubMed ID: 16621639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pyruvate carboxylase from Corynebacterium glutamicum : purification and characterization.
    Kortmann M; Baumgart M; Bott M
    Appl Microbiol Biotechnol; 2019 Aug; 103(16):6571-6580. PubMed ID: 31240367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rewiring the Central Metabolic Pathway for High-Yield l-Serine Production in Corynebacterium glutamicum by Using Glucose.
    Zhang X; Lai L; Xu G; Zhang X; Shi J; Koffas MAG; Xu Z
    Biotechnol J; 2019 Jun; 14(6):e1800497. PubMed ID: 30791233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering of Corynebacterium glutamicum for high-level γ-aminobutyric acid production from glycerol by dynamic metabolic control.
    Wei L; Zhao J; Wang Y; Gao J; Du M; Zhang Y; Xu N; Du H; Ju J; Liu Q; Liu J
    Metab Eng; 2022 Jan; 69():134-146. PubMed ID: 34856366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A 4-hydroxybenzoate 3-hydroxylase mutant enables 4-amino-3-hydroxybenzoic acid production from glucose in Corynebacterium glutamicum.
    Nonaka K; Osamura T; Takahashi F
    Microb Cell Fact; 2023 Aug; 22(1):168. PubMed ID: 37644492
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production.
    Jo S; Yoon J; Lee SM; Um Y; Han SO; Woo HM
    J Biotechnol; 2017 Sep; 258():69-78. PubMed ID: 28153765
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reconstruction and analysis of a genome-scale metabolic network of Corynebacterium glutamicum S9114.
    Mei J; Xu N; Ye C; Liu L; Wu J
    Gene; 2016 Jan; 575(2 Pt 3):615-22. PubMed ID: 26392034
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Screening efficient constitutive promoters in Corynebacterium glutamicum based on time-series transcriptome analysis].
    Wang Y; Liu J; Ni X; Lei Y; Zheng P; Diao A
    Sheng Wu Gong Cheng Xue Bao; 2018 Nov; 34(11):1760-1771. PubMed ID: 30499272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.