BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38090711)

  • 41. Kinetic characterisation of recombinant Corynebacterium glutamicum NAD+-dependent LDH over-expressed in E. coli and its rescue of an lldD- phenotype in C. glutamicum: the issue of reversibility re-examined.
    Sharkey MA; Maher MA; Guyonvarch A; Engel PC
    Arch Microbiol; 2011 Oct; 193(10):731-40. PubMed ID: 21567176
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fructose-1,6-bisphosphatase from Corynebacterium glutamicum: expression and deletion of the fbp gene and biochemical characterization of the enzyme.
    Rittmann D; Schaffer S; Wendisch VF; Sahm H
    Arch Microbiol; 2003 Oct; 180(4):285-92. PubMed ID: 12904832
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Overexpression of the phosphofructokinase encoding gene is crucial for achieving high production of D-lactate in Corynebacterium glutamicum under oxygen deprivation.
    Tsuge Y; Yamamoto S; Kato N; Suda M; Vertès AA; Yukawa H; Inui M
    Appl Microbiol Biotechnol; 2015 Jun; 99(11):4679-89. PubMed ID: 25820644
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi).
    Cleto S; Jensen JV; Wendisch VF; Lu TK
    ACS Synth Biol; 2016 May; 5(5):375-85. PubMed ID: 26829286
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 1,5-Diaminopentane production from xylooligosaccharides using metabolically engineered Corynebacterium glutamicum displaying beta-xylosidase on the cell surface.
    Imao K; Konishi R; Kishida M; Hirata Y; Segawa S; Adachi N; Matsuura R; Tsuge Y; Matsumoto T; Tanaka T; Kondo A
    Bioresour Technol; 2017 Dec; 245(Pt B):1684-1691. PubMed ID: 28599919
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose.
    Lee J; Saddler JN; Um Y; Woo HM
    Microb Cell Fact; 2016 Jan; 15():20. PubMed ID: 26801253
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones.
    Kallscheuer N; Vogt M; Stenzel A; Gätgens J; Bott M; Marienhagen J
    Metab Eng; 2016 Nov; 38():47-55. PubMed ID: 27288926
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recent advances in metabolic engineering of Corynebacterium glutamicum for bioproduction of value-added aromatic chemicals and natural products.
    Kogure T; Inui M
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8685-8705. PubMed ID: 30109397
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli.
    Okai N; Miyoshi T; Takeshima Y; Kuwahara H; Ogino C; Kondo A
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):135-45. PubMed ID: 26392137
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of a genetically engineered Escherichia coli strain for plasmid transformation in Corynebacterium glutamicum.
    Li H; Zhang L; Guo W; Xu D
    J Microbiol Methods; 2016 Dec; 131():156-160. PubMed ID: 27793586
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Construction and structural analysis of integrated cellular network of Corynebacterium glutamicum].
    Jiang J; Song L; Zheng P; Jia S; Sun J
    Sheng Wu Gong Cheng Xue Bao; 2012 May; 28(5):577-91. PubMed ID: 22916496
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Overexpression of methionine adenosyltransferase in Corynebacterium glutamicum for production of S-adenosyl-l-methionine.
    Han G; Hu X; Wang X
    Biotechnol Appl Biochem; 2016 Sep; 63(5):679-689. PubMed ID: 26238196
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of Corynebacterium glutamicum engineering display system in three generations of biorefinery.
    Lin K; Han S; Zheng S
    Microb Cell Fact; 2022 Jan; 21(1):14. PubMed ID: 35090458
    [TBL] [Abstract][Full Text] [Related]  

  • 54. L-valine production in Corynebacterium glutamicum based on systematic metabolic engineering: progress and prospects.
    Liu J; Xu JZ; Wang B; Rao ZM; Zhang WG
    Amino Acids; 2021 Sep; 53(9):1301-1312. PubMed ID: 34401958
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of CO
    Krüger A; Wiechert J; Gätgens C; Polen T; Mahr R; Frunzke J
    J Bacteriol; 2019 Oct; 201(20):. PubMed ID: 31358612
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
    Matano C; Uhde A; Youn JW; Maeda T; Clermont L; Marin K; Krämer R; Wendisch VF; Seibold GM
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5633-43. PubMed ID: 24668244
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improvement of L-citrulline production in Corynebacterium glutamicum by ornithine acetyltransferase.
    Hao N; Mu J; Hu N; Xu S; Yan M; Li Y; Guo K; Xu L
    J Ind Microbiol Biotechnol; 2015 Feb; 42(2):307-13. PubMed ID: 25492493
    [TBL] [Abstract][Full Text] [Related]  

  • 58.
    Ikeda M; Nagashima T; Nakamura E; Kato R; Ohshita M; Hayashi M; Takeno S
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28754705
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum.
    Marx A; Hans S; Möckel B; Bathe B; de Graaf AA; McCormack AC; Stapleton C; Burke K; O'Donohue M; Dunican LK
    J Biotechnol; 2003 Sep; 104(1-3):185-97. PubMed ID: 12948638
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose.
    Chen Z; Huang J; Wu Y; Wu W; Zhang Y; Liu D
    Metab Eng; 2017 Jan; 39():151-158. PubMed ID: 27918882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.