BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38090839)

  • 1. IMJENSE: Scan-Specific Implicit Representation for Joint Coil Sensitivity and Image Estimation in Parallel MRI.
    Feng R; Wu Q; Feng J; She H; Liu C; Zhang Y; Wei H
    IEEE Trans Med Imaging; 2024 Apr; 43(4):1539-1553. PubMed ID: 38090839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPICER: Self-supervised learning for MRI with automatic coil sensitivity estimation and reconstruction.
    Hu Y; Gan W; Ying C; Wang T; Eldeniz C; Liu J; Chen Y; An H; Kamilov US
    Magn Reson Med; 2024 Sep; 92(3):1048-1063. PubMed ID: 38725383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An End-to-End Recurrent Neural Network for Radial MR Image Reconstruction.
    Oh C; Chung JY; Han Y
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scan-specific artifact reduction in k-space (SPARK) neural networks synergize with physics-based reconstruction to accelerate MRI.
    Arefeen Y; Beker O; Cho J; Yu H; Adalsteinsson E; Bilgic B
    Magn Reson Med; 2022 Feb; 87(2):764-780. PubMed ID: 34601751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging.
    Akçakaya M; Moeller S; Weingärtner S; Uğurbil K
    Magn Reson Med; 2019 Jan; 81(1):439-453. PubMed ID: 30277269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated coronary MRI with sRAKI: A database-free self-consistent neural network k-space reconstruction for arbitrary undersampling.
    Hosseini SAH; Zhang C; Weingärtner S; Moeller S; Stuber M; Ugurbil K; Akçakaya M
    PLoS One; 2020; 15(2):e0229418. PubMed ID: 32084235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data.
    Yaman B; Hosseini SAH; Moeller S; Ellermann J; Uğurbil K; Akçakaya M
    Magn Reson Med; 2020 Dec; 84(6):3172-3191. PubMed ID: 32614100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calibrationless multi-slice Cartesian MRI via orthogonally alternating phase encoding direction and joint low-rank tensor completion.
    Zhao Y; Yi Z; Liu Y; Chen F; Xiao L; Leong ATL; Wu EX
    NMR Biomed; 2022 Jul; 35(7):e4695. PubMed ID: 35032072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving parallel imaging by jointly reconstructing multi-contrast data.
    Bilgic B; Kim TH; Liao C; Manhard MK; Wald LL; Haldar JP; Setsompop K
    Magn Reson Med; 2018 Aug; 80(2):619-632. PubMed ID: 29322551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. JSENSE-Pro: Joint sensitivity estimation and image reconstruction in parallel imaging using pre-learned subspaces of coil sensitivity functions.
    Tang L; Zhao Y; Li Y; Guo R; Cai B; Wang J; Li Y; Liang ZP; Peng X; Luo J
    Magn Reson Med; 2023 Apr; 89(4):1531-1542. PubMed ID: 36480000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerating Cartesian MRI by domain-transform manifold learning in phase-encoding direction.
    Eo T; Shin H; Jun Y; Kim T; Hwang D
    Med Image Anal; 2020 Jul; 63():101689. PubMed ID: 32299061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep supervised dictionary learning by algorithm unrolling-Application to fast 2D dynamic MR image reconstruction.
    Kofler A; Pali MC; Schaeffter T; Kolbitsch C
    Med Phys; 2023 May; 50(5):2939-2960. PubMed ID: 36565150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calibrationless reconstruction of uniformly-undersampled multi-channel MR data with deep learning estimated ESPIRiT maps.
    Zhang J; Yi Z; Zhao Y; Xiao L; Hu J; Man C; Lau V; Su S; Chen F; Leong ATL; Wu EX
    Magn Reson Med; 2023 Jul; 90(1):280-294. PubMed ID: 37119514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint calibrationless reconstruction of highly undersampled multicontrast MR datasets using a low-rank Hankel tensor completion framework.
    Yi Z; Liu Y; Zhao Y; Xiao L; Leong ATL; Feng Y; Chen F; Wu EX
    Magn Reson Med; 2021 Jun; 85(6):3256-3271. PubMed ID: 33533092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-mask self-supervised learning for physics-guided neural networks in highly accelerated magnetic resonance imaging.
    Yaman B; Gu H; Hosseini SAH; Demirel OB; Moeller S; Ellermann J; Uğurbil K; Akçakaya M
    NMR Biomed; 2022 Dec; 35(12):e4798. PubMed ID: 35789133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On retrospective k-space subsampling schemes for deep MRI reconstruction.
    Yiasemis G; Sánchez CI; Sonke JJ; Teuwen J
    Magn Reson Imaging; 2024 Apr; 107():33-46. PubMed ID: 38184093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A subject-specific unsupervised deep learning method for quantitative susceptibility mapping using implicit neural representation.
    Zhang M; Feng R; Li Z; Feng J; Wu Q; Zhang Z; Ma C; Wu J; Yan F; Liu C; Zhang Y; Wei H
    Med Image Anal; 2024 Jul; 95():103173. PubMed ID: 38657424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-efficient Bayesian learning for radial dynamic MR reconstruction.
    Brahma S; Kolbitsch C; Martin J; Schaeffter T; Kofler A
    Med Phys; 2023 Nov; 50(11):6955-6977. PubMed ID: 37367947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel-stream fusion of scan-specific and scan-general priors for learning deep MRI reconstruction in low-data regimes.
    Dar SUH; Öztürk Ş; Özbey M; Oguz KK; Çukur T
    Comput Biol Med; 2023 Dec; 167():107610. PubMed ID: 37883853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A noise robust image reconstruction using slice aware cycle interpolator network for parallel imaging in MRI.
    Kim J; Lee W; Kang B; Seo H; Park H
    Med Phys; 2024 Jun; 51(6):4143-4157. PubMed ID: 38598259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.