These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38091479)

  • 1. Ceria-Based Nanozymes in Point-of-Care Diagnosis: An Emerging Futuristic Approach for Biosensing.
    Wang R; Du Y; Fu Y; Guo Y; Gao X; Guo X; Wei J; Yang Y
    ACS Sens; 2023 Dec; 8(12):4442-4467. PubMed ID: 38091479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanozymes in Point-of-Care Diagnosis: An Emerging Futuristic Approach for Biosensing.
    Das B; Franco JL; Logan N; Balasubramanian P; Kim MI; Cao C
    Nanomicro Lett; 2021 Sep; 13(1):193. PubMed ID: 34515917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerium oxide based nanozymes: Redox phenomenon at biointerfaces.
    Singh S
    Biointerphases; 2016 Nov; 11(4):04B202. PubMed ID: 27806579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous enzyme mimicking and chemical reduction mechanisms for nanoceria as a bio-antioxidant: a catalytic model bridging computations and experiments for nanozymes.
    Wang Z; Shen X; Gao X; Zhao Y
    Nanoscale; 2019 Jul; 11(28):13289-13299. PubMed ID: 31287483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering the Bioactivity of Flame-Made Ceria and Ceria/Bioglass Hybrid Nanoparticles.
    Matter MT; Furer LA; Starsich FHL; Fortunato G; Pratsinis SE; Herrmann IK
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):2830-2839. PubMed ID: 30571079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox Active Cerium Oxide Nanoparticles: Current Status and Burning Issues.
    Lord MS; Berret JF; Singh S; Vinu A; Karakoti AS
    Small; 2021 Dec; 17(51):e2102342. PubMed ID: 34363314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Artificial Enzyme Activities on the Reconstructed Sawtoothlike Nanofacets of Pure and Pr-Doped Ceria Nanocubes.
    Jiang L; Tinoco M; Fernández-García S; Sun Y; Traviankina M; Nan P; Xue Q; Pan H; Aguinaco A; González-Leal JM; Blanco G; Blanco E; Hungría AB; Calvino JJ; Chen X
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38061-38073. PubMed ID: 34365790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanozymes: From New Concepts, Mechanisms, and Standards to Applications.
    Liang M; Yan X
    Acc Chem Res; 2019 Aug; 52(8):2190-2200. PubMed ID: 31276379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of cerium redox state in the SOD mimetic activity of nanoceria.
    Heckert EG; Karakoti AS; Seal S; Self WT
    Biomaterials; 2008 Jun; 29(18):2705-9. PubMed ID: 18395249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphotungstate-sandwiched between cerium oxide and gold nanoparticles exhibit enhanced catalytic reduction of 4-nitrophenol and peroxidase enzyme-like activity.
    Shah F; Yadav N; Singh S
    Colloids Surf B Biointerfaces; 2021 Feb; 198():111478. PubMed ID: 33272726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon.
    Bhagat S; Srikanth Vallabani NV; Shutthanandan V; Bowden M; Karakoti AS; Singh S
    J Colloid Interface Sci; 2018 Mar; 513():831-842. PubMed ID: 29223890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of DNA on the oxidase activity of nanoceria with different morphologies.
    Yang D; Fa M; Gao L; Zhao R; Luo Y; Yao X
    Nanotechnology; 2018 Sep; 29(38):385101. PubMed ID: 29949520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into Several Factors that Affect the Conversion between Antioxidant and Oxidant Activities of Nanoceria.
    Lu M; Zhang Y; Wang Y; Jiang M; Yao X
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23580-90. PubMed ID: 27548073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle.
    Thakur N; Manna P; Das J
    J Nanobiotechnology; 2019 Jul; 17(1):84. PubMed ID: 31291944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer-Aided Design of Nanoceria Structures as Enzyme Mimetic Agents: The Role of Bodily Electrolytes on Maximizing Their Activity.
    Molinari M; Symington AR; Sayle DC; Sakthivel TS; Seal S; Parker SC
    ACS Appl Bio Mater; 2019 Mar; 2(3):1098-1106. PubMed ID: 35021360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted Delivery and Redox Activity of Folic Acid-Functionalized Nanoceria in Tumor Cells.
    Vassie JA; Whitelock JM; Lord MS
    Mol Pharm; 2018 Mar; 15(3):994-1004. PubMed ID: 29397735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant and Prooxidant Nanozymes: From Cellular Redox Regulation to Next-Generation Therapeutics.
    Singh N; Sherin GR; Mugesh G
    Angew Chem Int Ed Engl; 2023 Aug; 62(33):e202301232. PubMed ID: 37083312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of DNA Damage Induced by Cerium Dioxide Nanoparticles: From Models to Molecular Mechanism Activated.
    de Souza TAJ; Rocha TL; Franchi LP
    Adv Exp Med Biol; 2018; 1048():215-226. PubMed ID: 29453541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoceria: an innovative strategy for cancer treatment.
    Tang JLY; Moonshi SS; Ta HT
    Cell Mol Life Sci; 2023 Jan; 80(2):46. PubMed ID: 36656411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidant nanozymes as next-generation therapeutics to free radical-mediated inflammatory diseases: A comprehensive review.
    Singh S
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129374. PubMed ID: 38242389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.