These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 38091662)
21. Pretreatment MRI-detected extramural venous invasion as a prognostic and predictive biomarker for neoadjuvant chemoradiotherapy in non-metastatic rectal cancer: a propensity score matched analysis. Yang SY; Bae H; Seo N; Han K; Han YD; Cho MS; Hur H; Min BS; Kim NK; Lee KY; Lim JS Eur Radiol; 2024 Jun; 34(6):3686-3698. PubMed ID: 37994967 [TBL] [Abstract][Full Text] [Related]
22. Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: an international multicenter study. Shaish H; Aukerman A; Vanguri R; Spinelli A; Armenta P; Jambawalikar S; Makkar J; Bentley-Hibbert S; Del Portillo A; Kiran R; Monti L; Bonifacio C; Kirienko M; Gardner KL; Schwartz L; Keller D Eur Radiol; 2020 Nov; 30(11):6263-6273. PubMed ID: 32500192 [TBL] [Abstract][Full Text] [Related]
23. Prediction of locally advanced rectal cancer response to neoadjuvant chemoradiation therapy using volumetric multiparametric MRI-based radiomics. El Homsi M; Bane O; Fauveau V; Hectors S; Vietti Violi N; Sylla P; Ko HB; Cuevas J; Carbonell G; Nehlsen A; Vanguri R; Viswanath S; Jambawalikar S; Shaish H; Taouli B Abdom Radiol (NY); 2024 Mar; 49(3):791-800. PubMed ID: 38150143 [TBL] [Abstract][Full Text] [Related]
24. MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy. Shin J; Seo N; Baek SE; Son NH; Lim JS; Kim NK; Koom WS; Kim S Radiology; 2022 May; 303(2):351-358. PubMed ID: 35133200 [TBL] [Abstract][Full Text] [Related]
25. Radiomics-enhanced early regression index for predicting treatment response in rectal cancer: a multi-institutional 0.35 T MRI-guided radiotherapy study. Boldrini L; Chiloiro G; Cusumano D; Yadav P; Yu G; Romano A; Piras A; Votta C; Placidi L; Broggi S; Catucci F; Lenkowicz J; Indovina L; Bassetti MF; Yang Y; Fiorino C; Valentini V; Gambacorta MA Radiol Med; 2024 Apr; 129(4):615-622. PubMed ID: 38512616 [TBL] [Abstract][Full Text] [Related]
26. MRI radiomics features of mesorectal fat can predict response to neoadjuvant chemoradiation therapy and tumor recurrence in patients with locally advanced rectal cancer. Jayaprakasam VS; Paroder V; Gibbs P; Bajwa R; Gangai N; Sosa RE; Petkovska I; Golia Pernicka JS; Fuqua JL; Bates DDB; Weiser MR; Cercek A; Gollub MJ Eur Radiol; 2022 Feb; 32(2):971-980. PubMed ID: 34327580 [TBL] [Abstract][Full Text] [Related]
27. The Predictive Value of Pre-/Postneoadjuvant Chemoradiotherapy MRI Characteristics for Patient Outcomes in Locally Advanced Rectal Cancer. Meng Y; Wan L; Zhang C; Wang C; Ye F; Li S; Zou S; Cheng J; Xu K; Zhou C; Zhang H Acad Radiol; 2020 Sep; 27(9):e233-e243. PubMed ID: 31780392 [TBL] [Abstract][Full Text] [Related]
28. Preoperative prediction of perineural invasion of rectal cancer based on a magnetic resonance imaging radiomics model: A dual-center study. Liu Y; Sun BJ; Zhang C; Li B; Yu XX; Du Y World J Gastroenterol; 2024 Apr; 30(16):2233-2248. PubMed ID: 38690027 [TBL] [Abstract][Full Text] [Related]
29. MR-based artificial intelligence model to assess response to therapy in locally advanced rectal cancer. Ferrari R; Mancini-Terracciano C; Voena C; Rengo M; Zerunian M; Ciardiello A; Grasso S; Mare' V; Paramatti R; Russomando A; Santacesaria R; Satta A; Solfaroli Camillocci E; Faccini R; Laghi A Eur J Radiol; 2019 Sep; 118():1-9. PubMed ID: 31439226 [TBL] [Abstract][Full Text] [Related]
30. Radiomics of locally advanced rectal cancer: machine learning-based prediction of response to neoadjuvant chemoradiotherapy using pre-treatment sagittal T2-weighted MRI. Yardimci AH; Kocak B; Sel I; Bulut H; Bektas CT; Cin M; Dursun N; Bektas H; Mermut O; Yardimci VH; Kilickesmez O Jpn J Radiol; 2023 Jan; 41(1):71-82. PubMed ID: 35962933 [TBL] [Abstract][Full Text] [Related]
31. Evaluating treatment response to neoadjuvant chemoradiotherapy in rectal cancer using various MRI-based radiomics models. Li Z; Ma X; Shen F; Lu H; Xia Y; Lu J BMC Med Imaging; 2021 Feb; 21(1):30. PubMed ID: 33593304 [TBL] [Abstract][Full Text] [Related]
32. [Predictive value of combination of MRI tumor regression grade and apparent diffusion coefficient for pathological complete remission after neoadjuvant treatment of locally advanced rectal cancer]. Xu N; Huang FC; Li WL; Luan X; Jiang YM; He B Zhonghua Wei Chang Wai Ke Za Zhi; 2021 Apr; 24(4):359-365. PubMed ID: 33878826 [No Abstract] [Full Text] [Related]
33. The value of the tumour-stroma ratio for predicting neoadjuvant chemoradiotherapy response in locally advanced rectal cancer: a case control study. Liang Y; Zhu Y; Lin H; Zhang S; Li S; Huang Y; Liu C; Qu J; Liang C; Zhao K; Li Z; Liu Z BMC Cancer; 2021 Jun; 21(1):729. PubMed ID: 34172021 [TBL] [Abstract][Full Text] [Related]
34. MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy. Horvat N; Veeraraghavan H; Khan M; Blazic I; Zheng J; Capanu M; Sala E; Garcia-Aguilar J; Gollub MJ; Petkovska I Radiology; 2018 Jun; 287(3):833-843. PubMed ID: 29514017 [TBL] [Abstract][Full Text] [Related]
35. Multiphase and multiparameter MRI-based radiomics for prediction of tumor response to neoadjuvant therapy in locally advanced rectal cancer. Huang H; Han L; Guo J; Zhang Y; Lin S; Chen S; Lin X; Cheng C; Guo Z; Qiu Y Radiat Oncol; 2023 Oct; 18(1):179. PubMed ID: 37907928 [TBL] [Abstract][Full Text] [Related]
36. Radiomics Features at Multiparametric MRI Predict Disease-Free Survival in Patients With Locally Advanced Rectal Cancer. Cui Y; Wang G; Ren J; Hou L; Li D; Wen Q; Xi Y; Yang X Acad Radiol; 2022 Aug; 29(8):e128-e138. PubMed ID: 34961658 [TBL] [Abstract][Full Text] [Related]
37. MRI-Based Radiomic Models Outperform Radiologists in Predicting Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Wen L; Liu J; Hu P; Bi F; Liu S; Jian L; Zhu S; Nie S; Cao F; Lu Q; Yu X; Liu K Acad Radiol; 2023 Sep; 30 Suppl 1():S176-S184. PubMed ID: 36739228 [TBL] [Abstract][Full Text] [Related]
38. Machine learning-based multiparametric MRI radiomics for predicting poor responders after neoadjuvant chemoradiotherapy in rectal Cancer patients. Wang J; Chen J; Zhou R; Gao Y; Li J BMC Cancer; 2022 Apr; 22(1):420. PubMed ID: 35439946 [TBL] [Abstract][Full Text] [Related]
39. A Comprehensive Prediction Model Based on MRI Radiomics and Clinical Factors to Predict Tumor Response After Neoadjuvant Chemoradiotherapy in Rectal Cancer. Jiang H; Guo W; Yu Z; Lin X; Zhang M; Jiang H; Zhang H; Sun Z; Li J; Yu Y; Zhao S; Hu H Acad Radiol; 2023 Sep; 30 Suppl 1():S185-S198. PubMed ID: 37394412 [TBL] [Abstract][Full Text] [Related]
40. Local tuning of radiomics-based model for predicting pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Tang B; Lenkowicz J; Peng Q; Boldrini L; Hou Q; Dinapoli N; Valentini V; Diao P; Yin G; Orlandini LC BMC Med Imaging; 2022 Mar; 22(1):44. PubMed ID: 35287607 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]