These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38091697)

  • 1. The sanitary sewer unit hydrograph model: A comprehensive tool for wastewater flow modeling and inflow-infiltration simulations.
    Perez G; Gomez-Velez JD; Grant SB
    Water Res; 2024 Feb; 249():120997. PubMed ID: 38091697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. River water intrusion as a source of inflow into the sanitary sewer system.
    Guo S; Shi X; Luo X; Yang H
    Water Sci Technol; 2020 Dec; 82(11):2472-2481. PubMed ID: 33339800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inflow and infiltration assessment of a prototype sanitary sewer network in a coastal city in China.
    Ye L; Qian Y; Zhu DZ; Huang B
    Water Sci Technol; 2023 Dec; 88(11):2940-2954. PubMed ID: 38096080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rainfall effects on inflow and infiltration in wastewater treatment systems in a coastal plain region.
    Cahoon LB; Hanke MH
    Water Sci Technol; 2017 Apr; 75(7-8):1909-1921. PubMed ID: 28452783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pin-pointing groundwater infiltration into urban sewers using chemical tracer in conjunction with physically based optimization model.
    Zhao Z; Yin H; Xu Z; Peng J; Yu Z
    Water Res; 2020 May; 175():115689. PubMed ID: 32199188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The telltale fluorescence fingerprints of sewer flows for interpreting the low influent concentration in wastewater treatment plant.
    Huang X; Fu X; Zhao Z; Yin H
    J Environ Manage; 2024 Jan; 349():119517. PubMed ID: 37952380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of groundwater infiltration and surface water inflows in urban sewer networks based on a multiple model approach.
    Karpf C; Krebs P
    Water Res; 2011 May; 45(10):3129-36. PubMed ID: 21497364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of rainfall-derived inflow and infiltration in sewer systems with machine learning approaches.
    Wang Y; Huang B; Zhu DZ
    Water Sci Technol; 2024 Apr; 89(8):1928-1945. PubMed ID: 38678400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wastewater compounds in urban shallow groundwater wells correspond to exfiltration probabilities of nearby sewers.
    Lee DG; Roehrdanz PR; Feraud M; Ervin J; Anumol T; Jia A; Park M; Tamez C; Morelius EW; Gardea-Torresdey JL; Izbicki J; Means JC; Snyder SA; Holden PA
    Water Res; 2015 Nov; 85():467-75. PubMed ID: 26379202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Source apportionment of pollutants and flows of combined sewer wastewater.
    Soonthornnonda P; Christensen ER
    Water Res; 2008 Apr; 42(8-9):1989-98. PubMed ID: 18164048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial variations of pollutants from sewer interception system overflow.
    Chen S; Qin HP; Zheng Y; Fu G
    J Environ Manage; 2019 Mar; 233():748-756. PubMed ID: 30316581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An effective and comprehensive model for optimal rehabilitation of separate sanitary sewer systems.
    Diogo AF; Barros LT; Santos J; Temido JS
    Sci Total Environ; 2018 Jan; 612():1042-1057. PubMed ID: 28892845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harmonized assessment of nutrient pollution from urban systems including losses from sewer exfiltration: a case study in Germany.
    Nguyen HH; Venohr M
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):63878-63893. PubMed ID: 33495958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Groundwater infiltration, surface water inflow and sewerage exfiltration considering hydrodynamic conditions in sewer systems.
    Karpf C; Hoeft S; Scheffer C; Fuchs L; Krebs P
    Water Sci Technol; 2011; 63(9):1841-8. PubMed ID: 21902021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction model of sparse autoencoder-based bidirectional LSTM for wastewater flow rate.
    Huang J; Yang S; Li J; Oh J; Kang H
    J Supercomput; 2023; 79(4):4412-4435. PubMed ID: 36188335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling sewer sediment deposition, erosion, and transport processes to predict acute influent and reduce combined sewer overflows and CO(2) emissions.
    Mouri G; Oki T
    Water Sci Technol; 2010; 62(10):2346-56. PubMed ID: 21076221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling in-sewer transformations at catchment scale - implications on drug consumption estimates in wastewater-based epidemiology.
    McCall AK; Palmitessa R; Blumensaat F; Morgenroth E; Ort C
    Water Res; 2017 Oct; 122():655-668. PubMed ID: 28651217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment on inflow and infiltration in sewerage systems of Kuantan, Pahang.
    Yap HT; Ngien SK
    Water Sci Technol; 2017 Dec; 76(11-12):2918-2927. PubMed ID: 29210679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between infiltration, sewer rehabilitation, and groundwater flooding in coastal urban areas.
    Su X; Liu T; Beheshti M; Prigiobbe V
    Environ Sci Pollut Res Int; 2020 May; 27(13):14288-14298. PubMed ID: 31686335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A smart sewer detection approach based on wavelet denoising of in-sewer temperature sensing measurement.
    Zhou Y; Li X; Wu R; Guo L; Yin H
    Water Res X; 2023 Dec; 21():100205. PubMed ID: 38098881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.