These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 38091765)

  • 1. Distributed deep reinforcement learning based on bi-objective framework for multi-robot formation.
    Li J; Liu Q; Chi G
    Neural Netw; 2024 Mar; 171():61-72. PubMed ID: 38091765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep reinforcement learning algorithm framework for solving multi-objective traveling salesman problem based on feature transformation.
    Zhao S; Gu S
    Neural Netw; 2024 Aug; 176():106359. PubMed ID: 38733797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Framework and Algorithm for Human-Robot Collaboration Based on Multimodal Reinforcement Learning.
    Cai Z; Feng Z; Zhou L; Ai C; Shao H; Yang X
    Comput Intell Neurosci; 2022; 2022():2341898. PubMed ID: 36210974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Intelligent Path Planning System of Agricultural Robot via Reinforcement Learning.
    Yang J; Ni J; Li Y; Wen J; Chen D
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep reinforcement learning algorithm for the rectangular strip packing problem.
    Fang J; Rao Y; Shi M
    PLoS One; 2023; 18(3):e0282598. PubMed ID: 36928505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable Jumping Control Based on Deep Reinforcement Learning for a Locust-Inspired Robot.
    Zhou Q; Li G; Tang R; Xu Y; Wen H; Shi Q
    Biomimetics (Basel); 2024 Sep; 9(9):. PubMed ID: 39329570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular deep reinforcement learning from reward and punishment for robot navigation.
    Wang J; Elfwing S; Uchibe E
    Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target Tracking Control of a Biomimetic Underwater Vehicle Through Deep Reinforcement Learning.
    Wang Y; Tang C; Wang S; Cheng L; Wang R; Tan M; Hou Z
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):3741-3752. PubMed ID: 33560993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive Quadruped Balance Control for Dynamic Environments Using Maximum-Entropy Reinforcement Learning.
    Sun H; Fu T; Ling Y; He C
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An approach to solving optimal control problems of nonlinear systems by introducing detail-reward mechanism in deep reinforcement learning.
    Yao S; Liu X; Zhang Y; Cui Z
    Math Biosci Eng; 2022 Jun; 19(9):9258-9290. PubMed ID: 35942758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IHG-MA: Inductive heterogeneous graph multi-agent reinforcement learning for multi-intersection traffic signal control.
    Yang S; Yang B; Kang Z; Deng L
    Neural Netw; 2021 Jul; 139():265-277. PubMed ID: 33838602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Reinforcement Learning for Indoor Mobile Robot Path Planning.
    Gao J; Ye W; Guo J; Li Z
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Reinforcement Learning on Autonomous Driving Policy With Auxiliary Critic Network.
    Wu Y; Liao S; Liu X; Li Z; Lu R
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3680-3690. PubMed ID: 34669579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on deep reinforcement learning basketball robot shooting skills improvement based on end to end architecture and multi-modal perception.
    Zhang J; Tao D
    Front Neurorobot; 2023; 17():1274543. PubMed ID: 37908406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot-assisted motor training: assistance decreases exploration during reinforcement learning.
    Sans-Muntadas A; Duarte JE; Reinkensmeyer DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3516-20. PubMed ID: 25570749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement learning for a biped robot based on a CPG-actor-critic method.
    Nakamura Y; Mori T; Sato MA; Ishii S
    Neural Netw; 2007 Aug; 20(6):723-35. PubMed ID: 17412559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive Discount Factor for Deep Reinforcement Learning in Continuing Tasks with Uncertainty.
    Kim M; Kim JS; Choi MS; Park JH
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A traffic light control method based on multi-agent deep reinforcement learning algorithm.
    Liu D; Li L
    Sci Rep; 2023 Jun; 13(1):9396. PubMed ID: 37296308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decentralized multi-agent reinforcement learning based on best-response policies.
    Gabler V; Wollherr D
    Front Robot AI; 2024; 11():1229026. PubMed ID: 38690119
    [No Abstract]   [Full Text] [Related]  

  • 20. End-to-End AUV Motion Planning Method Based on Soft Actor-Critic.
    Yu X; Sun Y; Wang X; Zhang G
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.