These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38091914)

  • 1. Photocontrolled chiroptical switch based on the self-assembly of azobenzene-bridged bis-tryptophan enantiomers.
    Guo S; Hu LY; Meng QY; Zhang YY; Zhang CC; Xing LJ; Yu H; Sun HL
    J Colloid Interface Sci; 2024 Mar; 657():913-920. PubMed ID: 38091914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiroptical switching in the azobenzene-based self-locked [1]rotaxane by solvent and photoirradiation.
    Song X; Zhu X; Wu S; Chen W; Tian W; Liu M
    Chirality; 2023 Oct; 35(10):692-699. PubMed ID: 37013339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocontrolled morphological conversion and chiral transfer of a snowflake-like supramolecular assembly based on azobenzene-bridged bis(dibenzo-24-crown-8) and a cholesterol derivative.
    Wang HJ; Zhang HY; Wu H; Dai XY; Li PY; Liu Y
    Chem Commun (Camb); 2019 Apr; 55(31):4499-4502. PubMed ID: 30919856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible Controlling the Supramolecular Chirality of Side Chain Azobenzene Polymers: Chiral Induction and Modulation.
    Li G; Xu M; Zhang S; Yang G; Li W
    Macromol Rapid Commun; 2022 Mar; 43(6):e2100904. PubMed ID: 35133021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiresponsive chiroptical switch of an azobenzene-containing lipid: solvent, temperature, and photoregulated supramolecular chirality.
    Duan P; Li Y; Li L; Deng J; Liu M
    J Phys Chem B; 2011 Apr; 115(13):3322-9. PubMed ID: 21405142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocontrolled Reversible Conversion of Nanotube and Nanoparticle Mediated by β-Cyclodextrin Dimers.
    Sun HL; Chen Y; Zhao J; Liu Y
    Angew Chem Int Ed Engl; 2015 Aug; 54(32):9376-80. PubMed ID: 26089230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic minimalistic tryptophan zippers as a chiroptical switch.
    Haridas V; Sadanandan S; Dhawan S; Mishra R; Jain I; Goel G; Hu Y; Patel S
    Org Biomol Chem; 2017 Feb; 15(7):1661-1669. PubMed ID: 28128389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoswitchable Carbohydrate-Based Macrocyclic Azobenzene: Synthesis, Chiroptical Switching, and Multistimuli-Responsive Self-Assembly.
    Lin C; Maisonneuve S; Métivier R; Xie J
    Chemistry; 2017 Oct; 23(60):14996-15001. PubMed ID: 28858420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of chiroptically switchable films via co-gelation of a small chiral gelator with an achiral azobenzene-containing polymer.
    Yang D; Zhang L; Yin L; Zhao Y; Zhang W; Liu M
    Soft Matter; 2017 Sep; 13(36):6129-6136. PubMed ID: 28791338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chirality Construction from Preferred π-π Stacks of Achiral Azobenzene Units in Polymer: Chiral Induction, Transfer and Memory.
    Miao T; Yin L; Cheng X; Zhao Y; Hou W; Zhang W; Zhu X
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binary Supramolecular Gel of Achiral Azobenzene with a Chaperone Gelator: Chirality Transfer, Tuned Morphology, and Chiroptical Property.
    Ji L; Ouyang G; Liu M
    Langmuir; 2017 Oct; 33(43):12419-12426. PubMed ID: 28972771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and conformation of substituted chiral binaphthyl-azobenzene cyclic dyads with chiroptical switching capabilities.
    Takaishi K; Kawamoto M
    Molecules; 2011 Feb; 16(2):1603-24. PubMed ID: 21321531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supra-dendron Gelator Based on Azobenzene-Cyclodextrin Host-Guest Interactions: Photoswitched Optical and Chiroptical Reversibility.
    Xie F; Ouyang G; Qin L; Liu M
    Chemistry; 2016 Dec; 22(50):18208-18214. PubMed ID: 27727482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host-guest self-assembly toward reversible visible-light-responsive switching for bacterial adhesion.
    Bian Q; Chen S; Xing Y; Yuan D; Lv L; Wang G
    Acta Biomater; 2018 Aug; 76():39-45. PubMed ID: 30078424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helical Self-Assembly of Amphiphilic Chiral Azobenzene Alternating Copolymers.
    Liu Z; Yao Y; Tao X; Wei J; Lin S
    ACS Macro Lett; 2021 Oct; 10(10):1174-1179. PubMed ID: 35549046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer, Amplification, Storage, and Complete Self-Recovery of Supramolecular Chirality in an Achiral Polymer System.
    Miao T; Cheng X; Ma H; He Z; Zhang Z; Zhou N; Zhang W; Zhu X
    Angew Chem Int Ed Engl; 2021 Aug; 60(34):18566-18571. PubMed ID: 34156135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the Multiple Chiroptical Inversion in Biphasic Liquid-Crystalline Polymers.
    Cheng X; Miao T; Ma Y; Zhu X; Zhang W; Zhu X
    Angew Chem Int Ed Engl; 2021 Nov; 60(46):24430-24436. PubMed ID: 34505335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Supramolecular Assembly and Photoswitchable Conversion of Cyclodextrin/Diphenylalanine-Based 1D and 2D Nanostructures.
    Sun HL; Chen Y; Han X; Liu Y
    Angew Chem Int Ed Engl; 2017 Jun; 56(25):7062-7065. PubMed ID: 28517106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent-induced helical assembly and reversible chiroptical switching of chiral cyclic-dipeptide-functionalized naphthalenediimides.
    Manchineella S; Prathyusha V; Priyakumar UD; Govindaraju T
    Chemistry; 2013 Dec; 19(49):16615-24. PubMed ID: 24281809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the Circular Polarization Capacity from Chiral Cellulose Nanocrystal Films for a Photo-Controlled Chiral Helix of Supramolecular Polymers.
    Xu M; Li G; Li W; An B; Sun J; Chen Z; Yu H; Li J; Yang G; Liu S
    Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202117042. PubMed ID: 35132754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.