These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38092040)

  • 1. Dynamic behaviour restructuring mediates dopamine-dependent credit assignment.
    Tang JCY; Paixao V; Carvalho F; Silva A; Klaus A; da Silva JA; Costa RM
    Nature; 2024 Feb; 626(7999):583-592. PubMed ID: 38092040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Navigating complex decision spaces: Problems and paradigms in sequential choice.
    Walsh MM; Anderson JR
    Psychol Bull; 2014 Mar; 140(2):466-86. PubMed ID: 23834192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous behaviour is structured by reinforcement without explicit reward.
    Markowitz JE; Gillis WF; Jay M; Wood J; Harris RW; Cieszkowski R; Scott R; Brann D; Koveal D; Kula T; Weinreb C; Osman MAM; Pinto SR; Uchida N; Linderman SW; Sabatini BL; Datta SR
    Nature; 2023 Feb; 614(7946):108-117. PubMed ID: 36653449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-shot learning and behavioral eligibility traces in sequential decision making.
    Lehmann MP; Xu HA; Liakoni V; Herzog MH; Gerstner W; Preuschoff K
    Elife; 2019 Nov; 8():. PubMed ID: 31709980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Credit Assignment in a Motor Decision Making Task Is Influenced by Agency and Not Sensory Prediction Errors.
    Parvin DE; McDougle SD; Taylor JA; Ivry RB
    J Neurosci; 2018 May; 38(19):4521-4530. PubMed ID: 29650698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement.
    Kim KM; Baratta MV; Yang A; Lee D; Boyden ES; Fiorillo CD
    PLoS One; 2012; 7(4):e33612. PubMed ID: 22506004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociable contributions of phasic dopamine activity to reward and prediction.
    Pan WX; Coddington LT; Dudman JT
    Cell Rep; 2021 Sep; 36(10):109684. PubMed ID: 34496245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopaminergic control of motivation and reinforcement learning: a closed-circuit account for reward-oriented behavior.
    Morita K; Morishima M; Sakai K; Kawaguchi Y
    J Neurosci; 2013 May; 33(20):8866-90. PubMed ID: 23678129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of dopaminergic and non-dopaminergic neurons to VTA-stimulation induced neurovascular responses in brain reward circuits.
    Brocka M; Helbing C; Vincenz D; Scherf T; Montag D; Goldschmidt J; Angenstein F; Lippert M
    Neuroimage; 2018 Aug; 177():88-97. PubMed ID: 29723641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopamine role in learning and action inference.
    Bogacz R
    Elife; 2020 Jul; 9():. PubMed ID: 32633715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Prediction to Action: Dissociable Roles of Ventral Tegmental Area and Substantia Nigra Dopamine Neurons in Instrumental Reinforcement.
    Fraser KM; Pribut HJ; Janak PH; Keiflin R
    J Neurosci; 2023 May; 43(21):3895-3908. PubMed ID: 37185097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective Effects of the Loss of NMDA or mGluR5 Receptors in the Reward System on Adaptive Decision-Making.
    Cieślak PE; Ahn WY; Bogacz R; Rodriguez Parkitna J
    eNeuro; 2018; 5(4):. PubMed ID: 30302389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopamine enhances model-free credit assignment through boosting of retrospective model-based inference.
    Deserno L; Moran R; Michely J; Lee Y; Dayan P; Dolan RJ
    Elife; 2021 Dec; 10():. PubMed ID: 34882092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human subjects exploit a cognitive map for credit assignment.
    Moran R; Dayan P; Dolan RJ
    Proc Natl Acad Sci U S A; 2021 Jan; 118(4):. PubMed ID: 33479182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A distributional code for value in dopamine-based reinforcement learning.
    Dabney W; Kurth-Nelson Z; Uchida N; Starkweather CK; Hassabis D; Munos R; Botvinick M
    Nature; 2020 Jan; 577(7792):671-675. PubMed ID: 31942076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens.
    Steinberg EE; Boivin JR; Saunders BT; Witten IB; Deisseroth K; Janak PH
    PLoS One; 2014; 9(4):e94771. PubMed ID: 24733061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensory Cues Potentiate VTA Dopamine Mediated Reinforcement.
    Wolff AR; Saunders BT
    eNeuro; 2024 Feb; 11(2):. PubMed ID: 38238080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arithmetic and local circuitry underlying dopamine prediction errors.
    Eshel N; Bukwich M; Rao V; Hemmelder V; Tian J; Uchida N
    Nature; 2015 Sep; 525(7568):243-6. PubMed ID: 26322583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociable dopamine dynamics for learning and motivation.
    Mohebi A; Pettibone JR; Hamid AA; Wong JT; Vinson LT; Patriarchi T; Tian L; Kennedy RT; Berke JD
    Nature; 2019 Jun; 570(7759):65-70. PubMed ID: 31118513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface.
    Gurney KN; Humphries MD; Redgrave P
    PLoS Biol; 2015 Jan; 13(1):e1002034. PubMed ID: 25562526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.