These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38092048)

  • 1. Rarity: discovering rare cell populations from single-cell imaging data.
    Märtens K; Bortolomeazzi M; Montorsi L; Spencer J; Ciccarelli F; Yau C
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38092048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive comparison of supervised and unsupervised methods for cell type identification in single-cell RNA-seq.
    Sun X; Lin X; Li Z; Wu H
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35021202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scConsensus: combining supervised and unsupervised clustering for cell type identification in single-cell RNA sequencing data.
    Ranjan B; Schmidt F; Sun W; Park J; Honardoost MA; Tan J; Arul Rayan N; Prabhakar S
    BMC Bioinformatics; 2021 Apr; 22(1):186. PubMed ID: 33845760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sub-Cluster Identification through Semi-Supervised Optimization of Rare-Cell Silhouettes (SCISSORS) in single-cell RNA-sequencing.
    Leary JR; Xu Y; Morrison AB; Jin C; Shen EC; Kuhlers PC; Su Y; Rashid NU; Yeh JJ; Peng XL
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37498558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell RNA-seq data semi-supervised clustering and annotation via structural regularized domain adaptation.
    Chen L; He Q; Zhai Y; Deng M
    Bioinformatics; 2021 May; 37(6):775-784. PubMed ID: 33098418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A scalable unsupervised learning of scRNAseq data detects rare cells through integration of structure-preserving embedding, clustering and outlier detection.
    Mallick K; Chakraborty S; Mallik S; Bandyopadhyay S
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37185897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data.
    Wang Z; Wang H; Zhao J; Zheng C
    BMC Bioinformatics; 2023 May; 24(1):217. PubMed ID: 37237310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scTPC: a novel semisupervised deep clustering model for scRNA-seq data.
    Qiu Y; Yang L; Jiang H; Zou Q
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38684178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ICAT: a novel algorithm to robustly identify cell states following perturbations in single-cell transcriptomes.
    Hawkins DY; Zuch DT; Huth J; Rodriguez-Sastre N; McCutcheon KR; Glick A; Lion AT; Thomas CF; Descoteaux AE; Johnson WE; Bradham CA
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37086439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scGAD: a new task and end-to-end framework for generalized cell type annotation and discovery.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36869836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data.
    Wan H; Chen L; Deng M
    Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polled Digital Cell Sorter (p-DCS): Automatic identification of hematological cell types from single cell RNA-sequencing clusters.
    Domanskyi S; Szedlak A; Hawkins NT; Wang J; Paternostro G; Piermarocchi C
    BMC Bioinformatics; 2019 Jul; 20(1):369. PubMed ID: 31262249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of single-cell RNAseq labelling algorithms using cancer datasets.
    Christensen E; Luo P; Turinsky A; Husić M; Mahalanabis A; Naidas A; Diaz-Mejia JJ; Brudno M; Pugh T; Ramani A; Shooshtari P
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36585784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scCNC: a method based on capsule network for clustering scRNA-seq data.
    Wang HY; Zhao JP; Zheng CH; Su YS
    Bioinformatics; 2022 Aug; 38(15):3703-3709. PubMed ID: 35699473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hidden Markov random field models for cell-type assignment of spatially resolved transcriptomics.
    Zhong C; Tian T; Wei Z
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37944045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating Deep Supervised, Self-Supervised and Unsupervised Learning for Single-Cell RNA-seq Clustering and Annotation.
    Chen L; Zhai Y; He Q; Wang W; Deng M
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32674393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data.
    Qiu Y; Yan C; Zhao P; Zou Q
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data.
    Wang S; Zhang Y; Zhang Y; Wu W; Ye L; Li Y; Su J; Pang S
    Comput Biol Med; 2023 Sep; 163():107152. PubMed ID: 37364529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An interpretable framework for clustering single-cell RNA-Seq datasets.
    Zhang JM; Fan J; Fan HC; Rosenfeld D; Tse DN
    BMC Bioinformatics; 2018 Mar; 19(1):93. PubMed ID: 29523077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.