These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38092065)

  • 1. Distinct neurogenetic mechanisms establish the same chemosensory valence state at different life stages in Caenorhabditis elegans.
    Banerjee N; Rojas Palato EJ; Shih PY; Sternberg PW; Hallem EA
    G3 (Bethesda); 2024 Feb; 14(2):. PubMed ID: 38092065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential processing of a chemosensory cue across life stages sharing the same valence state in
    Banerjee N; Shih PY; Rojas Palato EJ; Sternberg PW; Hallem EA
    Proc Natl Acad Sci U S A; 2023 May; 120(19):e2218023120. PubMed ID: 37126715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feeding state sculpts a circuit for sensory valence in
    Rengarajan S; Yankura KA; Guillermin ML; Fung W; Hallem EA
    Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1776-1781. PubMed ID: 30651312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Single Set of Interneurons Drives Opposite Behaviors in C. elegans.
    Guillermin ML; Carrillo MA; Hallem EA
    Curr Biol; 2017 Sep; 27(17):2630-2639.e6. PubMed ID: 28823678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity.
    Fenk LA; de Bono M
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3525-34. PubMed ID: 26100886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FMRFamide-like peptides expand the behavioral repertoire of a densely connected nervous system.
    Lee JS; Shih PY; Schaedel ON; Quintero-Cadena P; Rogers AK; Sternberg PW
    Proc Natl Acad Sci U S A; 2017 Dec; 114(50):E10726-E10735. PubMed ID: 29167374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EGL-13/SoxD specifies distinct O2 and CO2 sensory neuron fates in Caenorhabditis elegans.
    Gramstrup Petersen J; Rojo Romanos T; Juozaityte V; Redo Riveiro A; Hums I; Traunmüller L; Zimmer M; Pocock R
    PLoS Genet; 2013 May; 9(5):e1003511. PubMed ID: 23671427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuropeptide signaling remodels chemosensory circuit composition in Caenorhabditis elegans.
    Leinwand SG; Chalasani SH
    Nat Neurosci; 2013 Oct; 16(10):1461-7. PubMed ID: 24013594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A chemoreceptor that detects molecular carbon dioxide.
    Smith ES; Martinez-Velazquez L; Ringstad N
    J Biol Chem; 2013 Dec; 288(52):37071-81. PubMed ID: 24240097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic analysis of dauer formation in Caenorhabditis briggsae.
    Inoue T; Ailion M; Poon S; Kim HK; Thomas JH; Sternberg PW
    Genetics; 2007 Oct; 177(2):809-18. PubMed ID: 17660533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans.
    Bretscher AJ; Busch KE; de Bono M
    Proc Natl Acad Sci U S A; 2008 Jun; 105(23):8044-9. PubMed ID: 18524954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemosensory control of surface antigen switching in the nematode Caenorhabditis elegans.
    Olsen DP; Phu D; Libby LJ; Cormier JA; Montez KM; Ryder EF; Politz SM
    Genes Brain Behav; 2007 Apr; 6(3):240-52. PubMed ID: 16879619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of carbon dioxide in nematode behaviour and physiology.
    Banerjee N; Hallem EA
    Parasitology; 2020 Jul; 147(8):841-854. PubMed ID: 31601281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The neuropeptide NLP-22 regulates a sleep-like state in Caenorhabditis elegans.
    Nelson MD; Trojanowski NF; George-Raizen JB; Smith CJ; Yu CC; Fang-Yen C; Raizen DM
    Nat Commun; 2013; 4():2846. PubMed ID: 24301180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The neural circuits and sensory channels mediating harsh touch sensation in Caenorhabditis elegans.
    Li W; Kang L; Piggott BJ; Feng Z; Xu XZ
    Nat Commun; 2011; 2():315. PubMed ID: 21587232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural Coding of Thermal Preferences in the Nematode
    Matsuyama HJ; Mori I
    eNeuro; 2020; 7(3):. PubMed ID: 32253198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroendocrine regulation of fat metabolism by autophagy gene atg-18 in C. elegans dauer larvae.
    Jia R; Zhang J; Jia K
    FEBS Open Bio; 2019 Sep; 9(9):1623-1631. PubMed ID: 31368651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNAi pathways contribute to developmental history-dependent phenotypic plasticity in C. elegans.
    Hall SE; Chirn GW; Lau NC; Sengupta P
    RNA; 2013 Mar; 19(3):306-19. PubMed ID: 23329696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural Variation in a Dendritic Scaffold Protein Remodels Experience-Dependent Plasticity by Altering Neuropeptide Expression.
    Beets I; Zhang G; Fenk LA; Chen C; Nelson GM; Félix MA; de Bono M
    Neuron; 2020 Jan; 105(1):106-121.e10. PubMed ID: 31757604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An interneuronal chemoreceptor required for olfactory imprinting in C. elegans.
    Remy JJ; Hobert O
    Science; 2005 Jul; 309(5735):787-90. PubMed ID: 16051801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.