BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 38092067)

  • 1. Interactions Between Slopes of Residual Hearing and Frequency Maps in Simulated Bimodal and Electric-Acoustic Stimulation Hearing.
    Yoon YS; Straw S
    J Speech Lang Hear Res; 2024 Jan; 67(1):282-295. PubMed ID: 38092067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the Configuration of Hearing Loss on Consonant Perception between Simulated Bimodal and Electric Acoustic Stimulation Hearing.
    Yoon YS; Whitaker G; Lee YS
    J Am Acad Audiol; 2021 Sep; 32(8):521-527. PubMed ID: 34965598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field.
    Rader T; Fastl H; Baumann U
    Ear Hear; 2013; 34(3):324-32. PubMed ID: 23263408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of acoustic and electric hearing is better in the same ear than across ears.
    Fu QJ; Galvin JJ; Wang X
    Sci Rep; 2017 Oct; 7(1):12500. PubMed ID: 28970567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effectiveness of Place-based Mapping in Electric-Acoustic Stimulation Devices.
    Dillon MT; Canfarotta MW; Buss E; Hopfinger J; O'Connell BP
    Otol Neurotol; 2021 Jan; 42(1):197-202. PubMed ID: 33885267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phantom Stimulation for Cochlear Implant Users With Residual Low-Frequency Hearing.
    Krüger B; Büchner A; Nogueira W
    Ear Hear; 2022; 43(2):631-645. PubMed ID: 34593687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing maps for electric acoustic stimulation users.
    Yoon YS; Shin YR; Kim JM; Coltisor A; Chun YM
    Cochlear Implants Int; 2019 May; 20(3):106-115. PubMed ID: 30694120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric-Acoustic Stimulation After Reimplantation: Hearing Preservation and Speech Perception.
    Thompson NJ; Dillon MT; Bucker AL; King ER; Pillsbury HC; Brown KD
    Otol Neurotol; 2019 Feb; 40(2):e94-e98. PubMed ID: 30624400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of noise on integration of acoustic and electric hearing within and across ears.
    Willis S; Moore BCJ; Galvin JJ; Fu QJ
    PLoS One; 2020; 15(10):e0240752. PubMed ID: 33057396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speech Perception With Combined Electric-Acoustic Stimulation: A Simulation and Model Comparison.
    Rader T; Adel Y; Fastl H; Baumann U
    Ear Hear; 2015; 36(6):e314-25. PubMed ID: 25989069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined Electric and Acoustic Stimulation With Hearing Preservation: Effect of Cochlear Implant Low-Frequency Cutoff on Speech Understanding and Perceived Listening Difficulty.
    Gifford RH; Davis TJ; Sunderhaus LW; Menapace C; Buck B; Crosson J; O'Neill L; Beiter A; Segel P
    Ear Hear; 2017; 38(5):539-553. PubMed ID: 28301392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hearing Preservation Outcomes After Cochlear Implantation Depending on the Angle of Insertion: Indication for Electric or Electric-Acoustic Stimulation.
    Helbig S; Adel Y; Leinung M; Stöver T; Baumann U; Weissgerber T
    Otol Neurotol; 2018 Aug; 39(7):834-841. PubMed ID: 29912820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Two Place-Based Mapping Procedures on Masked Sentence Recognition as a Function of Electrode Array Angular Insertion Depth and Presence of Acoustic Low-Frequency Information: A Simulation Study.
    Dillon MT; Buss E; Johnson AD; Canfarotta MW; O'Connell BP
    Audiol Neurootol; 2023; 28(6):478-487. PubMed ID: 37482054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cochlear implant spectral bandwidth for optimizing electric and acoustic stimulation (EAS).
    Gifford RH; Sunderhaus LW; Dawant BM; Labadie RF; Noble JH
    Hear Res; 2022 Dec; 426():108584. PubMed ID: 35985964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binaural cue sensitivity in cochlear implant recipients with acoustic hearing preservation.
    Gifford RH; Stecker GC
    Hear Res; 2020 May; 390():107929. PubMed ID: 32182551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An overview of factors affecting bimodal and electric-acoustic stimulation (EAS) speech understanding outcomes.
    Payne J; Au A; Dowell RC
    Hear Res; 2023 Apr; 431():108736. PubMed ID: 36931019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency importance functions in simulated bimodal cochlear-implant users with spectral holes.
    Yoon YS; Whitaker R; White N
    J Acoust Soc Am; 2024 Jun; 155(6):3589-3599. PubMed ID: 38829154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential Benefits of an Integrated Electric-Acoustic Sound Processor with Children: A Preliminary Report.
    Wolfe J; Neumann S; Schafer E; Marsh M; Wood M; Baker RS
    J Am Acad Audiol; 2017 Feb; 28(2):127-140. PubMed ID: 28240980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Top-Down Processes in Simulated Electric-Acoustic Hearing: The Effect of Linguistic Context on Bimodal Benefit for Temporally Interrupted Speech.
    Oh SH; Donaldson GS; Kong YY
    Ear Hear; 2016; 37(5):582-92. PubMed ID: 27007220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acceptance and Benefits of Electro-Acoustic Stimulation for Conventional-Length Electrode Arrays.
    Spitzer ER; Waltzman SB; Landsberger DM; Friedmann DR
    Audiol Neurootol; 2021; 26(1):17-26. PubMed ID: 32721977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.