These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38092247)

  • 1. A data-driven epidemic model with human mobility and vaccination protection for COVID-19 prediction.
    Li R; Song Y; Qu H; Li M; Jiang GP
    J Biomed Inform; 2024 Jan; 149():104571. PubMed ID: 38092247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new SEAIRD pandemic prediction model with clinical and epidemiological data analysis on COVID-19 outbreak.
    Liu XX; Fong SJ; Dey N; Crespo RG; Herrera-Viedma E
    Appl Intell (Dordr); 2021; 51(7):4162-4198. PubMed ID: 34764574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated framework for building trustworthy data-driven epidemiological models: Application to the COVID-19 outbreak in New York City.
    Zhang S; Ponce J; Zhang Z; Lin G; Karniadakis G
    PLoS Comput Biol; 2021 Sep; 17(9):e1009334. PubMed ID: 34495965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining the dynamic model and deep neural networks to identify the intensity of interventions during COVID-19 pandemic.
    He M; Tang S; Xiao Y
    PLoS Comput Biol; 2023 Oct; 19(10):e1011535. PubMed ID: 37851640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A physics-informed neural network to model COVID-19 infection and hospitalization scenarios.
    Berkhahn S; Ehrhardt M
    Adv Contin Discret Model; 2022; 2022(1):61. PubMed ID: 36320680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamically adjustable SVEIR(MH) model of multiwave epidemics: Estimating the effects of public health measures against COVID-19.
    Yin ZJ; Xiao H; McDonald S; Brusic V; Qiu TY
    J Med Virol; 2023 Dec; 95(12):e29301. PubMed ID: 38087460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epidemiological characteristics and dynamic transmissions of COVID-19 pandemics in Chinese mainland: A trajectory clustering perspective analysis.
    Chen J; Chen S; Duan G; Zhang T; Zhao H; Wu Z; Yang H; Ding S
    Epidemics; 2023 Dec; 45():100719. PubMed ID: 37783112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Containing pandemics through targeted testing of households.
    Voigt A; Martyushenko N; Karlsen E; Hall M; Nyhamar K; Omholt SW; Almaas E
    BMC Infect Dis; 2021 Jun; 21(1):548. PubMed ID: 34107917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Physics-Informed Neural Network approach for compartmental epidemiological models.
    Millevoi C; Pasetto D; Ferronato M
    PLoS Comput Biol; 2024 Sep; 20(9):e1012387. PubMed ID: 39236067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring the spread of COVID-19: the role of time-varying reporting rate in epidemiological modelling.
    Spannaus A; Papamarkou T; Erwin S; Christian JB
    Sci Rep; 2022 Jun; 12(1):10761. PubMed ID: 35750796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural-SEIR: A flexible data-driven framework for precise prediction of epidemic disease.
    Wang H; Qiu X; Yang J; Li Q; Tan X; Huang J
    Math Biosci Eng; 2023 Aug; 20(9):16807-16823. PubMed ID: 37920035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractional SEIR model and data-driven predictions of COVID-19 dynamics of Omicron variant.
    Cai M; Em Karniadakis G; Li C
    Chaos; 2022 Jul; 32(7):071101. PubMed ID: 35907723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wastewater-based modeling, reconstruction, and prediction for COVID-19 outbreaks in Hungary caused by highly immune evasive variants.
    Polcz P; Tornai K; Juhász J; Cserey G; Surján G; Pándics T; Róka E; Vargha M; Reguly IZ; Csikász-Nagy A; Pongor S; Szederkényi G
    Water Res; 2023 Aug; 241():120098. PubMed ID: 37295226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A versatile web app for identifying the drivers of COVID-19 epidemics.
    Getz WM; Salter R; Luisa Vissat L; Horvitz N
    J Transl Med; 2021 Mar; 19(1):109. PubMed ID: 33726787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OutbreakFlow: Model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany.
    Radev ST; Graw F; Chen S; Mutters NT; Eichel VM; Bärnighausen T; Köthe U
    PLoS Comput Biol; 2021 Oct; 17(10):e1009472. PubMed ID: 34695111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of medical resource capacities and intensities of public mitigation measures on outcomes of COVID-19 outbreaks.
    Wang X; Li Q; Sun X; He S; Xia F; Song P; Shao Y; Wu J; Cheke RA; Tang S; Xiao Y
    BMC Public Health; 2021 Mar; 21(1):605. PubMed ID: 33781225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Public Health Surveillance to Track and Mitigate the US COVID-19 Epidemic: Longitudinal Trend Analysis Study.
    Post LA; Issa TZ; Boctor MJ; Moss CB; Murphy RL; Ison MG; Achenbach CJ; Resnick D; Singh LN; White J; Faber JMM; Culler K; Brandt CA; Oehmke JF
    J Med Internet Res; 2020 Dec; 22(12):e24286. PubMed ID: 33216726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Governmental Health Measures on Public Behaviour During the COVID-19 Pandemic Outbreak.
    Wang G; Li L; Wang L; Xu Z
    Int J Health Policy Manag; 2022 Oct; 11(10):2166-2174. PubMed ID: 34814663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of vaccination on mitigating COVID-19 outbreaks: a conceptual modeling approach.
    Fisher A; Xu H; He D; Wang X
    Math Biosci Eng; 2023 Jan; 20(3):4816-4837. PubMed ID: 36896524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations make pandemics worse or better: modeling SARS-CoV-2 variants and imperfect vaccination.
    Bugalia S; Tripathi JP; Wang H
    J Math Biol; 2024 Mar; 88(4):45. PubMed ID: 38507066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.