BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38092387)

  • 1. Circadian and sleep phenotypes in a mouse model of Alzheimer's disease characterized by intracellular accumulation of amyloid β oligomers.
    Sato T; Ochiishi T; Higo-Yamamoto S; Oishi K
    Exp Anim; 2024 May; 73(2):186-192. PubMed ID: 38092387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond the sleep-amyloid interactions in Alzheimer's disease pathogenesis.
    Ning S; Jorfi M
    J Neurophysiol; 2019 Jul; 122(1):1-4. PubMed ID: 30864847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep and EEG Power Spectral Analysis in Three Transgenic Mouse Models of Alzheimer's Disease: APP/PS1, 3xTgAD, and Tg2576.
    Kent BA; Strittmatter SM; Nygaard HB
    J Alzheimers Dis; 2018; 64(4):1325-1336. PubMed ID: 29991134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of the sleep-wake cycle and diurnal fluctuation of β-amyloid in mice with Alzheimer's disease pathology.
    Roh JH; Huang Y; Bero AW; Kasten T; Stewart FR; Bateman RJ; Holtzman DM
    Sci Transl Med; 2012 Sep; 4(150):150ra122. PubMed ID: 22956200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of SAMP8 Mice as a Model for Sleep-Wake and Rhythm Disturbances Associated with Alzheimer's Disease: Impact of Treatment with the Dual Orexin (Hypocretin) Receptor Antagonist Lemborexant.
    Beuckmann CT; Suzuki H; Musiek ES; Ueno T; Sato T; Bando M; Osada Y; Moline M
    J Alzheimers Dis; 2021; 81(3):1151-1167. PubMed ID: 33843668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG, activity, and sleep architecture in a transgenic AβPPswe/PSEN1A246E Alzheimer's disease mouse.
    Jyoti A; Plano A; Riedel G; Platt B
    J Alzheimers Dis; 2010; 22(3):873-87. PubMed ID: 20858963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amyloid-β diurnal pattern: possible role of sleep in Alzheimer's disease pathogenesis.
    Lucey BP; Bateman RJ
    Neurobiol Aging; 2014 Sep; 35 Suppl 2():S29-34. PubMed ID: 24910393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amyloid β and tau are involved in sleep disorder in Alzheimer's disease by orexin A and adenosine A(1) receptor.
    Liu Z; Wang F; Tang M; Zhao Y; Wang X
    Int J Mol Med; 2019 Jan; 43(1):435-442. PubMed ID: 30365112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of aging and genotype on circadian rhythms, sleep, and clock gene expression in APPxPS1 knock-in mice, a model for Alzheimer's disease.
    Duncan MJ; Smith JT; Franklin KM; Beckett TL; Murphy MP; St Clair DK; Donohue KD; Striz M; O'Hara BF
    Exp Neurol; 2012 Aug; 236(2):249-58. PubMed ID: 22634208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Alzheimer's disease model mouse specialized for analyzing the function and toxicity of intraneuronal Amyloid β oligomers.
    Ochiishi T; Kaku M; Kiyosue K; Doi M; Urabe T; Hattori N; Shimura H; Ebihara T
    Sci Rep; 2019 Nov; 9(1):17368. PubMed ID: 31757975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sleep-Wake Cycle Dysfunction in the TgCRND8 Mouse Model of Alzheimer's Disease: From Early to Advanced Pathological Stages.
    Colby-Milley J; Cavanagh C; Jego S; Breitner JC; Quirion R; Adamantidis A
    PLoS One; 2015; 10(6):e0130177. PubMed ID: 26076358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle.
    Kang JE; Lim MM; Bateman RJ; Lee JJ; Smyth LP; Cirrito JR; Fujiki N; Nishino S; Holtzman DM
    Science; 2009 Nov; 326(5955):1005-7. PubMed ID: 19779148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delayed daily activity and reduced NREM slow-wave power in the APPswe/PS1dE9 mouse model of Alzheimer's disease.
    Kent BA; Michalik M; Marchant EG; Yau KW; Feldman HH; Mistlberger RE; Nygaard HB
    Neurobiol Aging; 2019 Jun; 78():74-86. PubMed ID: 30884411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sleep and diurnal rest-activity rhythm disturbances in a mouse model of Alzheimer's disease.
    Filon MJ; Wallace E; Wright S; Douglas DJ; Steinberg LI; Verkuilen CL; Westmark PR; Maganti RK; Westmark CJ
    Sleep; 2020 Nov; 43(11):. PubMed ID: 32369586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of growth hormone-releasing hormone on sleep and brain interstitial fluid amyloid-β in an APP transgenic mouse model.
    Liao F; Zhang TJ; Mahan TE; Jiang H; Holtzman DM
    Brain Behav Immun; 2015 Jul; 47():163-71. PubMed ID: 25218899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep architecture changes in the APP23 mouse model manifest at onset of cognitive deficits.
    Van Erum J; Van Dam D; Sheorajpanday R; De Deyn PP
    Behav Brain Res; 2019 Nov; 373():112089. PubMed ID: 31325518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nexus of Aβ, aging, and sleep.
    Gerstner JR; Perron IJ; Pack AI
    Sci Transl Med; 2012 Sep; 4(150):150fs34. PubMed ID: 22956197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Candidate mechanisms underlying the association between sleep-wake disruptions and Alzheimer's disease.
    Cedernaes J; Osorio RS; Varga AW; Kam K; Schiöth HB; Benedict C
    Sleep Med Rev; 2017 Feb; 31():102-111. PubMed ID: 26996255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alzheimer's disease amyloid-β pathology in the lens of the eye.
    Moncaster JA; Moir RD; Burton MA; Chadwick O; Minaeva O; Alvarez VE; Ericsson M; Clark JI; McKee AC; Tanzi RE; Goldstein LE
    Exp Eye Res; 2022 Aug; 221():108974. PubMed ID: 35202705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. It's complicated: The relationship between sleep and Alzheimer's disease in humans.
    Lucey BP
    Neurobiol Dis; 2020 Oct; 144():105031. PubMed ID: 32738506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.