These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38092489)

  • 1. Comparing three generic musculoskeletal models to estimate the tibiofemoral reaction forces during gait and sit-to-stand tasks.
    Pelegrinelli ARM; Catelli DS; Kowalski E; Lamontagne M; Moura FA
    Med Eng Phys; 2023 Dec; 122():104074. PubMed ID: 38092489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.
    Gerus P; Sartori M; Besier TF; Fregly BJ; Delp SL; Banks SA; Pandy MG; D'Lima DD; Lloyd DG
    J Biomech; 2013 Nov; 46(16):2778-86. PubMed ID: 24074941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concurrent prediction of ground reaction forces and moments and tibiofemoral contact forces during walking using musculoskeletal modelling.
    Peng Y; Zhang Z; Gao Y; Chen Z; Xin H; Zhang Q; Fan X; Jin Z
    Med Eng Phys; 2018 Feb; 52():31-40. PubMed ID: 29269224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait.
    Guess TM; Stylianou AP; Kia M
    J Biomech Eng; 2014 Feb; 136(2):021032. PubMed ID: 24389997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait.
    Moissenet F; Chèze L; Dumas R
    J Biomech; 2014 Jan; 47(1):50-8. PubMed ID: 24210475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces.
    Lerner ZF; DeMers MS; Delp SL; Browning RC
    J Biomech; 2015 Feb; 48(4):644-650. PubMed ID: 25595425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A custom musculoskeletal model for estimation of medial and lateral tibiofemoral contact forces during tasks with high knee and hip flexions.
    Bedo BLS; Catelli DS; Lamontagne M; Santiago PRP
    Comput Methods Biomech Biomed Engin; 2020 Aug; 23(10):658-663. PubMed ID: 32393120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependency of lower limb joint reaction forces on femoral version.
    Modenese L; Barzan M; Carty CP
    Gait Posture; 2021 Jul; 88():318-321. PubMed ID: 34246172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A subject-specific musculoskeletal model to predict the tibiofemoral contact forces during daily living activities.
    Zhang L; Liu G; Yan Y; Han B; Li H; Ma J; Wang X
    Comput Methods Biomech Biomed Engin; 2023 Jun; 26(8):972-985. PubMed ID: 35852103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vivo Knee Contact Force Prediction Using Patient-Specific Musculoskeletal Geometry in a Segment-Based Computational Model.
    Ding Z; Nolte D; Kit Tsang C; Cleather DJ; Kedgley AE; Bull AM
    J Biomech Eng; 2016 Feb; 138(2):021018. PubMed ID: 26720641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Searching for strategies to reduce the mechanical demands of the sit-to-stand task with a muscle-actuated optimal control model.
    Bobbert MF; Kistemaker DA; Vaz MA; Ackermann M
    Clin Biomech (Bristol); 2016 Aug; 37():83-90. PubMed ID: 27380203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Musculoskeletal model choice influences hip joint load estimations during gait.
    Weinhandl JT; Bennett HJ
    J Biomech; 2019 Jun; 91():124-132. PubMed ID: 31126592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromyography-Driven Forward Dynamics Simulation to Estimate In Vivo Joint Contact Forces During Normal, Smooth, and Bouncy Gaits.
    Razu SS; Guess TM
    J Biomech Eng; 2018 Jul; 140(7):0710121-8. PubMed ID: 29164228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of the Knee Adduction Moment and Joint Contact Force during Daily Living Activities Using Inertial Motion Capture.
    Konrath JM; Karatsidis A; Schepers HM; Bellusci G; de Zee M; Andersen MS
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30970538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tibiofemoral Contact Forces in the Anterior Cruciate Ligament-Reconstructed Knee.
    Saxby DJ; Bryant AL; Modenese L; Gerus P; Killen BA; Konrath J; Fortin K; Wrigley TV; Bennell KL; Cicuttini FM; Vertullo C; Feller JA; Whitehead T; Gallie P; Lloyd DG
    Med Sci Sports Exerc; 2016 Nov; 48(11):2195-2206. PubMed ID: 27337173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressive tibiofemoral force during crouch gait.
    Steele KM; Demers MS; Schwartz MH; Delp SL
    Gait Posture; 2012 Apr; 35(4):556-60. PubMed ID: 22206783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle force estimation in clinical gait analysis using AnyBody and OpenSim.
    Trinler U; Schwameder H; Baker R; Alexander N
    J Biomech; 2019 Mar; 86():55-63. PubMed ID: 30739769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altering the strength of the muscles crossing the lower limb joints only affects knee joint reaction forces.
    Bicer M; Phillips AT; Modenese L
    Gait Posture; 2022 Jun; 95():210-216. PubMed ID: 35550278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Obesity is associated with higher absolute tibiofemoral contact and muscle forces during gait with and without knee osteoarthritis.
    Harding GT; Dunbar MJ; Hubley-Kozey CL; Stanish WD; Astephen Wilson JL
    Clin Biomech (Bristol); 2016 Jan; 31():79-86. PubMed ID: 26476602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High tibiofemoral contact and muscle forces during gait are associated with radiographic knee OA progression over 3 years.
    Amiri P; Davis EM; Outerleys J; Miller RH; Brandon S; Astephen Wilson JL
    Knee; 2023 Mar; 41():245-256. PubMed ID: 36745960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.