These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38092777)

  • 41. Development of a step-down method for altering male C57BL/6 mouse housing density and hierarchical structure: Preparations for spaceflight studies.
    Scofield DC; Rytlewski JD; Childress P; Shah K; Tucker A; Khan F; Peveler J; Li D; McKinley TO; Chu TG; Hickman DL; Kacena MA
    Life Sci Space Res (Amst); 2018 May; 17():44-50. PubMed ID: 29753413
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Human gut microbiome and metabolite dynamics under simulated microgravity.
    Ramos-Nascimento A; Grenga L; Haange SB; Himmelmann A; Arndt FS; Ly YT; Miotello G; Pible O; Jehmlich N; Engelmann B; von Bergen M; Mulder E; Frings-Meuthen P; Hellweg CE; Jordan J; Rolle-Kampczyk U; Armengaud J; Moeller R
    Gut Microbes; 2023 Dec; 15(2):2259033. PubMed ID: 37749878
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cardiovascular, Lymphatic, and Ocular Health in Space.
    Ly V; Velichala SR; Hargens AR
    Life (Basel); 2022 Feb; 12(2):. PubMed ID: 35207555
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Longitudinal metabolomic profiles reveal sex-specific adjustments to long-duration spaceflight and return to Earth.
    Stroud JE; Gale MS; Zwart SR; Heer M; Smith SM; Montina T; Metz GAS
    Cell Mol Life Sci; 2022 Nov; 79(11):578. PubMed ID: 36319708
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spaceflight and simulated microgravity cause a significant reduction of key gene expression in early T-cell activation.
    Martinez EM; Yoshida MC; Candelario TL; Hughes-Fulford M
    Am J Physiol Regul Integr Comp Physiol; 2015 Mar; 308(6):R480-8. PubMed ID: 25568077
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Is skeletal muscle ready for long-term spaceflight and return to gravity?
    Riley DA
    Adv Space Biol Med; 1999; 7():31-48. PubMed ID: 10660772
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimization of Exercise Countermeasures to Spaceflight Using Blood Flow Restriction.
    Hughes L; Hackney KJ; Patterson SD
    Aerosp Med Hum Perform; 2022 Jan; 93(1):32-45. PubMed ID: 35063054
    [No Abstract]   [Full Text] [Related]  

  • 49. A supervised Bayesian factor model for the identification of multi-omics signatures.
    Gygi JP; Konstorum A; Pawar S; Aron E; Kleinstein SH; Guan L
    bioRxiv; 2023 Sep; ():. PubMed ID: 36747790
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Terrestrial stress analogs for spaceflight associated immune system dysregulation.
    Crucian B; Simpson RJ; Mehta S; Stowe R; Chouker A; Hwang SA; Actor JK; Salam AP; Pierson D; Sams C
    Brain Behav Immun; 2014 Jul; 39():23-32. PubMed ID: 24462949
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative Analysis of Muscle Atrophy During Spaceflight, Nutritional Deficiency and Disuse in the Nematode
    Kim BS; Alcantara AV; Moon JH; Higashitani A; Higashitani N; Etheridge T; Szewczyk NJ; Deane CS; Gaffney CJ; Higashibata A; Hashizume T; Yoon KH; Lee JI
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37628820
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lumbar Spine Paraspinal Muscle and Intervertebral Disc Height Changes in Astronauts After Long-Duration Spaceflight on the International Space Station.
    Chang DG; Healey RM; Snyder AJ; Sayson JV; Macias BR; Coughlin DG; Bailey JF; Parazynski SE; Lotz JC; Hargens AR
    Spine (Phila Pa 1976); 2016 Dec; 41(24):1917-1924. PubMed ID: 27779600
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Machine learning algorithm to characterize antimicrobial resistance associated with the International Space Station surface microbiome.
    Madrigal P; Singh NK; Wood JM; Gaudioso E; Hernández-Del-Olmo F; Mason CE; Venkateswaran K; Beheshti A
    Microbiome; 2022 Aug; 10(1):134. PubMed ID: 35999570
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres.
    Widrick JJ; Knuth ST; Norenberg KM; Romatowski JG; Bain JL; Riley DA; Karhanek M; Trappe SW; Trappe TA; Costill DL; Fitts RH
    J Physiol; 1999 May; 516 ( Pt 3)(Pt 3):915-30. PubMed ID: 10200437
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transcriptome analysis of gravitational effects on mouse skeletal muscles under microgravity and artificial 1 g onboard environment.
    Okada R; Fujita SI; Suzuki R; Hayashi T; Tsubouchi H; Kato C; Sadaki S; Kanai M; Fuseya S; Inoue Y; Jeon H; Hamada M; Kuno A; Ishii A; Tamaoka A; Tanihata J; Ito N; Shiba D; Shirakawa M; Muratani M; Kudo T; Takahashi S
    Sci Rep; 2021 Apr; 11(1):9168. PubMed ID: 33911096
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis.
    Tong L; Mitchel J; Chatlin K; Wang MD
    BMC Med Inform Decis Mak; 2020 Sep; 20(1):225. PubMed ID: 32933515
    [TBL] [Abstract][Full Text] [Related]  

  • 57. NASA GeneLab: interfaces for the exploration of space omics data.
    Berrios DC; Galazka J; Grigorev K; Gebre S; Costes SV
    Nucleic Acids Res; 2021 Jan; 49(D1):D1515-D1522. PubMed ID: 33080015
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Skeletal muscle in MuRF1 null mice is not spared in low-gravity conditions, indicating atrophy proceeds by unique mechanisms in space.
    Cadena SM; Zhang Y; Fang J; Brachat S; Kuss P; Giorgetti E; Stodieck LS; Kneissel M; Glass DJ
    Sci Rep; 2019 Jun; 9(1):9397. PubMed ID: 31253821
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Immune System Dysregulation During Spaceflight: Potential Countermeasures for Deep Space Exploration Missions.
    Crucian BE; Choukèr A; Simpson RJ; Mehta S; Marshall G; Smith SM; Zwart SR; Heer M; Ponomarev S; Whitmire A; Frippiat JP; Douglas GL; Lorenzi H; Buchheim JI; Makedonas G; Ginsburg GS; Ott CM; Pierson DL; Krieger SS; Baecker N; Sams C
    Front Immunol; 2018; 9():1437. PubMed ID: 30018614
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment.
    Rea G; Cristofaro F; Pani G; Pascucci B; Ghuge SA; Corsetto PA; Imbriani M; Visai L; Rizzo AM
    J Proteomics; 2016 Mar; 137():3-18. PubMed ID: 26571091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.