BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38093269)

  • 1. A deep learning model for predicting risks of crop pests and diseases from sequential environmental data.
    Lee S; Yun CM
    Plant Methods; 2023 Dec; 19(1):145. PubMed ID: 38093269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Survey on crop pest detection using deep learning and machine learning approaches.
    Chithambarathanu M; Jeyakumar MK
    Multimed Tools Appl; 2023 Apr; ():1-34. PubMed ID: 37362671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmentation and detection of crop pests using novel U-Net with hybrid deep learning mechanism.
    Biradar N; Hosalli G
    Pest Manag Sci; 2024 Mar; ():. PubMed ID: 38506377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early real-time detection algorithm of tomato diseases and pests in the natural environment.
    Wang X; Liu J; Zhu X
    Plant Methods; 2021 Apr; 17(1):43. PubMed ID: 33892765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tomato Diseases and Pests Detection Based on Improved Yolo V3 Convolutional Neural Network.
    Liu J; Wang X
    Front Plant Sci; 2020; 11():898. PubMed ID: 32612632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pest insect control in organically-produced crops of field vegetables.
    Collier RH; Finch S; Davies G
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2a):259-67. PubMed ID: 12425046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Efficient Pest Detection Framework with a Medium-Scale Benchmark to Increase the Agricultural Productivity.
    Aladhadh S; Habib S; Islam M; Aloraini M; Aladhadh M; Al-Rawashdeh HS
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occurrence prediction of pests and diseases in cotton on the basis of weather factors by long short term memory network.
    Xiao Q; Li W; Kai Y; Chen P; Zhang J; Wang B
    BMC Bioinformatics; 2019 Dec; 20(Suppl 25):688. PubMed ID: 31874611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic pest identification system in the greenhouse based on deep learning and machine vision.
    Zhang X; Bu J; Zhou X; Wang X
    Front Plant Sci; 2023; 14():1255719. PubMed ID: 37841606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the Landscape on Insect Pests and Associated Natural Enemies in Greenhouses Crops: The Strawberry Study Case.
    Doehler M; Chauvin D; Le Ralec A; Vanespen É; Outreman Y
    Insects; 2023 Mar; 14(3):. PubMed ID: 36975987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition.
    Fuentes A; Yoon S; Kim SC; Park DS
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28869539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristic features of statistical models and machine learning methods derived from pest and disease monitoring datasets.
    Kishi S; Sun J; Kawaguchi A; Ochi S; Yoshida M; Yamanaka T
    R Soc Open Sci; 2023 Jun; 10(6):230079. PubMed ID: 37388311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Classification Service System for Citrus Pest Recognition Based on Deep Learning.
    Lee S; Choi G; Park HC; Choi C
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tomato Pest Recognition Algorithm Based on Improved YOLOv4.
    Liu J; Wang X; Miao W; Liu G
    Front Plant Sci; 2022; 13():814681. PubMed ID: 35909759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intercropping Cover Crops for a Vital Ecosystem Service: A Review of the Biocontrol of Insect Pests in Tea Agroecosystems.
    Pokharel SS; Yu H; Fang W; Parajulee MN; Chen F
    Plants (Basel); 2023 Jun; 12(12):. PubMed ID: 37375986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crop pest image classification based on improved densely connected convolutional network.
    Peng H; Xu H; Gao Z; Zhou Z; Tian X; Deng Q; He H; Xian C
    Front Plant Sci; 2023; 14():1133060. PubMed ID: 37077629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning algorithms for forecasting the incidence of Coffea arabica pests and diseases.
    de Oliveira Aparecido LE; de Souza Rolim G; da Silva Cabral De Moraes JR; Costa CTS; de Souza PS
    Int J Biometeorol; 2020 Apr; 64(4):671-688. PubMed ID: 31912306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction: A deep learning model for predicting risks of crop pests and diseases from sequential environmental data.
    Lee S; Yun CM
    Plant Methods; 2024 Feb; 20(1):24. PubMed ID: 38311760
    [No Abstract]   [Full Text] [Related]  

  • 19. Detecting strawberry diseases and pest infections in the very early stage with an ensemble deep-learning model.
    Lee S; Arora AS; Yun CM
    Front Plant Sci; 2022; 13():991134. PubMed ID: 36311098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced crop health monitoring: attention convolutional stacked recurrent networks and binary Kepler search for early detection of paddy crop issues.
    R E; T M
    Environ Monit Assess; 2024 May; 196(6):561. PubMed ID: 38767686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.