BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38093730)

  • 1. Ti-Si composite glycol salts: depolymerization and repolymerization studies of PET.
    Yu Y; Shen G; Xu TJ; Wen R; Qiao YC; Cheng RC; Huo Y
    RSC Adv; 2023 Dec; 13(51):36337-36345. PubMed ID: 38093730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of Ti-BA efficiently for the catalytic alcoholysis of waste PET using response surface methodology.
    Wen R; Shen G; Yu Y; Xu S; Wei J; Huo Y; Jiang S
    RSC Adv; 2023 Jun; 13(25):17166-17178. PubMed ID: 37304773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization and Kinetic Evaluation for Glycolytic Depolymerization of Post-Consumer PET Waste with Sodium Methoxide.
    Javed S; Fisse J; Vogt D
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Step Chemo-Microbial Degradation of Post-Consumer Polyethylene Terephthalate (PET) Plastic Enabled by a Biomass-Waste Catalyst.
    Shingwekar D; Laster H; Kemp H; Mellies JL
    Bioengineering (Basel); 2023 Oct; 10(11):. PubMed ID: 38002377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing PET Glycolysis with an Oyster Shell-Derived Catalyst Using Response Surface Methodology.
    Kim Y; Kim M; Hwang J; Im E; Moon GD
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled Glycolysis of Poly(ethylene terephthalate) to Oligomers under Microwave Irradiation Using Antimony(III) Oxide.
    Mohammadi S; Bouldo MG; Enayati M
    ACS Appl Polym Mater; 2023 Aug; 5(8):6574-6584. PubMed ID: 37588081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable PET Waste Recycling: Labels from PET Water Bottles Used as a Catalyst for the Chemical Recycling of the Same Bottles.
    Enayati M; Mohammadi S; Bouldo MG
    ACS Sustain Chem Eng; 2023 Nov; 11(46):16618-16626. PubMed ID: 38028403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supercritical methanol for polyethylene terephthalate depolymerization: observation using simulator.
    Genta M; Iwaya T; Sasaki M; Goto M
    Waste Manag; 2007; 27(9):1167-77. PubMed ID: 16914302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel efficient enzymatic synthesis of the key-reaction intermediate of PET depolymerization, mono(2-hydroxyethyl terephthalate) - MHET.
    Eugenio EQ; Campisano ISP; Dias AG; Castro AM; Coelho MAZ; Langone MAP
    J Biotechnol; 2022 Nov; 358():102-110. PubMed ID: 36063976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal and enzymatic bio-depolymerization of waste post-consumer poly(ethylene terephthalate) (PET) bottles using
    Moyses DN; Teixeira DA; Waldow VA; Freire DMG; Castro AM
    3 Biotech; 2021 Oct; 11(10):435. PubMed ID: 34603913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depolymerization of poly(ethylene terephthalate) waste with biomass-waste derived recyclable heterogeneous catalyst.
    Laldinpuii Z; Lalhmangaihzuala S; Pachuau Z; Vanlaldinpuia K
    Waste Manag; 2021 May; 126():1-10. PubMed ID: 33730654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic ionic liquid catalyst functionalized with antimony (III) bromide for effective glycolysis of polyethylene terephthalate.
    Mohammadi S; Enayati M
    Waste Manag; 2023 Oct; 170():308-316. PubMed ID: 37738758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical Recycling of PET Using Catalysts from Layered Double Hydroxides: Effect of Synthesis Method and Mg-Fe Biocompatible Metals.
    Arcanjo AP; Liborio DO; Arias S; Carvalho FR; Silva JP; Ribeiro BD; Dias ML; Castro AM; Fréty R; Barbosa CMBM; Pacheco JGA
    Polymers (Basel); 2023 Aug; 15(15):. PubMed ID: 37571167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decolorization and reusing of PET depolymerization waste liquid by electrochemical method with magnetic nanoelectrodes.
    Li M; Li Y; Lu J; Li X; Lu Y
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):34531-34539. PubMed ID: 30311119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical Recycling of Used PET by Glycolysis Using Niobia-Based Catalysts.
    Shirazimoghaddam S; Amin I; Faria Albanese JA; Shiju NR
    ACS Eng Au; 2023 Feb; 3(1):37-44. PubMed ID: 36820227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of Ti-PA efficiently catalytic the alcoholysis of waste PET using response surface methodology.
    Wen R; Shen G; Yu Y; Zhu J; Xu S; Wei J; Huo Y
    Environ Sci Pollut Res Int; 2024 May; 31(23):33443-33453. PubMed ID: 38683426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a novel esterase and construction of a Rhodococcus-Burkholderia consortium capable of catabolism bis (2-hydroxyethyl) terephthalate.
    Jiang W; Sun J; Dong W; Zhou J; Jiang Y; Zhang W; Xin F; Jiang M
    Environ Res; 2023 Dec; 238(Pt 2):117240. PubMed ID: 37783328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of Poly(Ethylene Terephthalate) Homogeneous Glycolysis Kinetics.
    Kirshanov KA; Toms RV; Balashov MS; Golubkov SS; Melnikov PV; Gervald AY
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical scavenging of post-consumed clothes.
    Barot AA; Sinha VK
    Waste Manag; 2015 Dec; 46():86-93. PubMed ID: 26383902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced biodegradation of waste poly(ethylene terephthalate) using a reinforced plastic degrading enzyme complex.
    Hwang DH; Lee ME; Cho BH; Oh JW; You SK; Ko YJ; Hyeon JE; Han SO
    Sci Total Environ; 2022 Oct; 842():156890. PubMed ID: 35753492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.