These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 38094911)
21. Investigation on the Mechanisms of Spontaneous Imbibition at High Pressures for Tight Oil Recovery. Wang C; Gao H; Qi Y; Li X; Zhang R; Fan H ACS Omega; 2020 Jun; 5(22):12727-12734. PubMed ID: 32548456 [TBL] [Abstract][Full Text] [Related]
22. The effect of evaporation-induced flow at the pore scale on nanoparticle transport and deposition in drying unsaturated porous media. Yan S; Kibbey TCG J Contam Hydrol; 2019 Oct; 226():103524. PubMed ID: 31362130 [TBL] [Abstract][Full Text] [Related]
23. Imaging porosity evolution of tight sandstone during spontaneous water imbibition by X-ray Micro-CT. Miletić M; Küçükuysal C; Gülcan M; Garcia R Heliyon; 2024 Jun; 10(11):e31844. PubMed ID: 38845948 [TBL] [Abstract][Full Text] [Related]
24. Pore-scale studies of spontaneous imbibition into oil-saturated porous media. Hatiboglu CU; Babadagli T Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066311. PubMed ID: 18643375 [TBL] [Abstract][Full Text] [Related]
25. The Spontaneous Imbibition of Micro/Nano Structures in Tight Matrix and the Influence on Imbibition Potential. Li C; Xian C; Wang J; Geng D; Shen Y Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32839387 [TBL] [Abstract][Full Text] [Related]
26. Generalized modeling of spontaneous imbibition based on Hagen-Poiseuille flow in tortuous capillaries with variably shaped apertures. Cai J; Perfect E; Cheng CL; Hu X Langmuir; 2014 May; 30(18):5142-51. PubMed ID: 24785579 [TBL] [Abstract][Full Text] [Related]
27. Spontaneous Imbibition of Capillaries under the End Effect and Wetting Hysteresis. Zhang L; Wang K; An H; Li G; Su Y; Zhang W; Yang X ACS Omega; 2022 Feb; 7(5):4363-4371. PubMed ID: 35155929 [TBL] [Abstract][Full Text] [Related]
29. Microfluidic Study on the Effect of Single Pore-Throat Geometry on Spontaneous Imbibition. Liu Y; He F; Hu Z; Zhu Z; Ling C Langmuir; 2024 Sep; 40(36):19209-19219. PubMed ID: 39208147 [TBL] [Abstract][Full Text] [Related]
30. Experimental characterization of [Formula: see text]/water multiphase flow in heterogeneous sandstone rock at the core scale relevant for underground hydrogen storage (UHS). Boon M; Hajibeygi H Sci Rep; 2022 Aug; 12(1):14604. PubMed ID: 36028567 [TBL] [Abstract][Full Text] [Related]
31. Investigation of smoothed particle hydrodynamics (SPH) method for modeling of two-phase flow through porous medium: application for drainage and imbibition processes. Mohammadi M; Shafiei M; Zarin T; Kazemzadeh Y; Parsaei R; Riazi M Sci Rep; 2024 Sep; 14(1):22144. PubMed ID: 39333685 [TBL] [Abstract][Full Text] [Related]
32. Determination of the spatial distribution of wetting in the pore networks of rocks. Garfi G; John CM; Rücker M; Lin Q; Spurin C; Berg S; Krevor S J Colloid Interface Sci; 2022 May; 613():786-795. PubMed ID: 35074705 [TBL] [Abstract][Full Text] [Related]
33. Deformation dynamics of nanopores upon water imbibition. Sanchez J; Dammann L; Gallardo L; Li Z; Fröba M; Meißner RH; Stone HA; Huber P Proc Natl Acad Sci U S A; 2024 Sep; 121(38):e2318386121. PubMed ID: 39264743 [TBL] [Abstract][Full Text] [Related]
34. The Law and Mechanism of the Sample Size Effect of Imbibition Oil Recovery of Tight Sedimentary Tuff. Li S; Yang S; Dong W; Wang M; Yu J ACS Omega; 2022 Jan; 7(2):1956-1974. PubMed ID: 35071885 [TBL] [Abstract][Full Text] [Related]
35. Dynamics of snap-off and pore-filling events during two-phase fluid flow in permeable media. Singh K; Menke H; Andrew M; Lin Q; Rau C; Blunt MJ; Bijeljic B Sci Rep; 2017 Jul; 7(1):5192. PubMed ID: 28701699 [TBL] [Abstract][Full Text] [Related]
36. Influence of wettability conditions on slow evaporation in two-dimensional porous media. Chapuis O; Prat M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046311. PubMed ID: 17500997 [TBL] [Abstract][Full Text] [Related]
37. Impact of mineralogy and wettability on pore-scale displacement of NAPLs in heterogeneous porous media. Arshadi M; Gesho M; Qin T; Goual L; Piri M J Contam Hydrol; 2020 Mar; 230():103599. PubMed ID: 31932069 [TBL] [Abstract][Full Text] [Related]
38. Effect of Fluid Properties on Contact Angles in the Eagle Ford Shale Measured with Spontaneous Imbibition. McFarlane J; DiStefano VH; Bingham PR; Bilheux HZ; Cheshire MC; Hale RE; Hussey DS; Jacobson DL; Kolbus L; LaManna JM; Perfect E; Rivers M; Santodonato LJ; Anovitz LM ACS Omega; 2021 Dec; 6(48):32618-32630. PubMed ID: 34901610 [TBL] [Abstract][Full Text] [Related]
39. Surface hydration drives rapid water imbibition into strongly hydrophilic nanopores. Fang C; Qiao R Phys Chem Chem Phys; 2017 Aug; 19(31):20506-20512. PubMed ID: 28726859 [TBL] [Abstract][Full Text] [Related]
40. Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media. Hashemi L; Blunt M; Hajibeygi H Sci Rep; 2021 Apr; 11(1):8348. PubMed ID: 33863943 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]