BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38095138)

  • 1. Epigallocatechin gallate alleviated the in vivo toxicity of ZnO nanoparticles to mouse intestine.
    Wang C; Huang C; Cao Y
    J Appl Toxicol; 2024 May; 44(5):686-698. PubMed ID: 38095138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of epigallocatechin gallate on the stability, dissolution and toxicology of ZnO nanoparticles.
    Cao W; Gu M; Wang S; Huang C; Xie Y; Cao Y
    Food Chem; 2022 Mar; 371():131383. PubMed ID: 34808776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of bovine serum albumin pre-incubation on toxicity and ER stress-apoptosis gene expression in THP-1 macrophages exposed to ZnO nanoparticles.
    Liang H; He T; Long J; Liu L; Liao G; Ding Y; Cao Y
    Toxicol Mech Methods; 2018 Oct; 28(8):587-598. PubMed ID: 29783874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer's disease mice model.
    Cano A; Ettcheto M; Chang JH; Barroso E; Espina M; Kühne BA; Barenys M; Auladell C; Folch J; Souto EB; Camins A; Turowski P; García ML
    J Control Release; 2019 May; 301():62-75. PubMed ID: 30876953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3-Hydroxyflavone enhances the toxicity of ZnO nanoparticles in vitro.
    Luo Y; Wu C; Liu L; Gong Y; Peng S; Xie Y; Cao Y
    J Appl Toxicol; 2018 Sep; 38(9):1206-1214. PubMed ID: 29691881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity of ZnO nanoparticles (NPs) to THP-1 macrophages: interactions with saturated or unsaturated free fatty acids.
    Jiang M; Wu B; Sun Y; Ding Y; Xie Y; Liu L; Cao Y
    Toxicol Mech Methods; 2019 May; 29(4):291-299. PubMed ID: 30461332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of baicalein or baicalin on the colloidal stability of ZnO nanoparticles (NPs) and toxicity of NPs to Caco-2 cells.
    Li Y; Zhang C; Liu L; Gong Y; Xie Y; Cao Y
    Toxicol Mech Methods; 2018 Mar; 28(3):167-176. PubMed ID: 28868948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Nickel Nanoparticles-Induced Toxicity by Epigallocatechin-3-Gallate in JB6 Cells May Be through Down-Regulation of the MAPK Signaling Pathways.
    Gu Y; Wang Y; Zhou Q; Bowman L; Mao G; Zou B; Xu J; Liu Y; Liu K; Zhao J; Ding M
    PLoS One; 2016; 11(3):e0150954. PubMed ID: 26943640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, development, and characterization of lipid nanocarriers-based epigallocatechin gallate delivery system for preventive and therapeutic supplementation.
    Frias I; Neves AR; Pinheiro M; Reis S
    Drug Des Devel Ther; 2016; 10():3519-3528. PubMed ID: 27826184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folate decorated epigallocatechin-3-gallate (EGCG) loaded PLGA nanoparticles; in-vitro and in-vivo targeting efficacy against MDA-MB-231 tumor xenograft.
    Kazi J; Sen R; Ganguly S; Jha T; Ganguly S; Chatterjee Debnath M
    Int J Pharm; 2020 Jul; 585():119449. PubMed ID: 32464231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan nanoparticles enhance the plasma exposure of (-)-epigallocatechin gallate in mice through an enhancement in intestinal stability.
    Dube A; Nicolazzo JA; Larson I
    Eur J Pharm Sci; 2011 Oct; 44(3):422-6. PubMed ID: 21925598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of endoplasmic reticulum stress inducer thapsigargin on the toxicity of ZnO or TiO
    Gu Y; Cheng S; Chen G; Shen Y; Li X; Jiang Q; Li J; Cao Y
    Toxicol Mech Methods; 2017 Mar; 27(3):191-200. PubMed ID: 27997269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EGCG assisted green synthesis of ZnO nanopowders: Photodegradative, antimicrobial and antioxidant activities.
    Suresh D; Udayabhanu ; Nethravathi PC; Lingaraju K; Rajanaika H; Sharma SC; Nagabhushana H
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1467-74. PubMed ID: 25459708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of pristine and hydrophobic ZnO nanoparticles on cytotoxicity and endoplasmic reticulum (ER) stress-autophagy-apoptosis gene expression in A549-macrophage co-culture.
    Liu T; Liang H; Liu L; Gong Y; Ding Y; Liao G; Cao Y
    Ecotoxicol Environ Saf; 2019 Jan; 167():188-195. PubMed ID: 30340083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc Oxide Nanoparticles Significant Role in Poultry and Novel Toxicological Mechanisms.
    Fatima A; Zaheer T; Pal K; Abbas RZ; Akhtar T; Ali S; Mahmood MS
    Biol Trace Elem Res; 2024 Jan; 202(1):268-290. PubMed ID: 37060542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled release and antioxidant activity of chitosan and β-lactoglobulin complex nanoparticles loaded with epigallocatechin gallate.
    Dai W; Ruan C; Sun Y; Gao X; Liang J
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110802. PubMed ID: 31958618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endoplasmic reticulum stress-related calcium imbalance plays an important role on Zinc oxide nanoparticles-induced failure of neural tube closure during embryogenesis.
    Yan Y; Wang G; Luo X; Zhang P; Peng S; Cheng X; Wang M; Yang X
    Environ Int; 2021 Jul; 152():106495. PubMed ID: 33730632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defect-induced electronic states amplify the cellular toxicity of ZnO nanoparticles.
    Persaud I; Raghavendra AJ; Paruthi A; Alsaleh NB; Minarchick VC; Roede JR; Podila R; Brown JM
    Nanotoxicology; 2020 Mar; 14(2):145-161. PubMed ID: 31553248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rat pancreatitis produced by 13-week administration of zinc oxide nanoparticles: biopersistence of nanoparticles and possible solutions.
    Seok SH; Cho WS; Park JS; Na Y; Jang A; Kim H; Cho Y; Kim T; You JR; Ko S; Kang BC; Lee JK; Jeong J; Che JH
    J Appl Toxicol; 2013 Oct; 33(10):1089-96. PubMed ID: 23408656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metagenomics Approach to the Intestinal Microbiome Structure and Abundance in High-Fat-Diet-Induced Hyperlipidemic Rat Fed with (-)-Epigallocatechin-3-Gallate Nanoparticles.
    Chen Z; Liu B; Gong Z; Huang H; Gong Y; Xiao W
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35956844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.