These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38095355)

  • 1. To DISP or Not? The Far-Reaching Reaction Mechanisms Underpinning Lithium-Air Batteries.
    Jethwa RB; Mondal S; Pant B; Freunberger SA
    Angew Chem Int Ed Engl; 2024 Jul; 63(28):e202316476. PubMed ID: 38095355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why charging Li-air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation.
    Ahn S; Zor C; Yang S; Lagnoni M; Dewar D; Nimmo T; Chau C; Jenkins M; Kibler AJ; Pateman A; Rees GJ; Gao X; Adamson P; Grobert N; Bertei A; Johnson LR; Bruce PG
    Nat Chem; 2023 Jul; 15(7):1022-1029. PubMed ID: 37264102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen.
    Mahne N; Renfrew SE; McCloskey BD; Freunberger SA
    Angew Chem Int Ed Engl; 2018 May; 57(19):5529-5533. PubMed ID: 29543372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Reaction Pathway of Superoxide Disproportionation Induced by a Soluble Catalyst in Li-O
    Jiang Z; Wen B; Huang Y; Guo Y; Wang Y; Li F
    Angew Chem Int Ed Engl; 2024 Jan; 63(1):e202315314. PubMed ID: 38009311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shifting Target Reaction from Oxygen Reduction to Superoxide Disproportionation by Tuning Isomeric Configuration of Quinone Derivative as Redox Mediator for Lithium-Oxygen Batteries.
    Kim J; Lee J; Jeong J; Hwang C; Song HK
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9066-9072. PubMed ID: 35132850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Singlet Oxygen during Cycling of the Aprotic Sodium-O
    Schafzahl L; Mahne N; Schafzahl B; Wilkening M; Slugovc C; Borisov SM; Freunberger SA
    Angew Chem Int Ed Engl; 2017 Dec; 56(49):15728-15732. PubMed ID: 29024316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox mediators for high-performance lithium-oxygen batteries.
    Dou Y; Xie Z; Wei Y; Peng Z; Zhou Z
    Natl Sci Rev; 2022 Apr; 9(4):nwac040. PubMed ID: 35548381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium-Air Batteries: Air-Electrochemistry and Anode Stabilization.
    Chen K; Yang DY; Huang G; Zhang XB
    Acc Chem Res; 2021 Feb; 54(3):632-641. PubMed ID: 33449629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox Mediators for Li-O
    Park JB; Lee SH; Jung HG; Aurbach D; Sun YK
    Adv Mater; 2018 Jan; 30(1):. PubMed ID: 29178214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium-Oxygen Batteries.
    Liang Z; Lu YC
    J Am Chem Soc; 2016 Jun; 138(24):7574-83. PubMed ID: 27228413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Cathodes in Rechargeable Lithium-Oxygen Batteries Based on Double-Lithium-Salt Electrolytes.
    Yoo E; Zhou H
    ChemSusChem; 2016 Jun; 9(11):1249-54. PubMed ID: 27120298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in Lithium-Oxygen Batteries Based on Lithium Hydroxide Formation and Decomposition.
    Zhang X; Dong P; Song MK
    Front Chem; 2022; 10():923936. PubMed ID: 35844634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cation Additive Enabled Rechargeable LiOH-Based Lithium-Oxygen Batteries.
    Bi X; Li M; Liu C; Yuan Y; Wang H; Key B; Wang R; Shahbazian-Yassar R; Curtiss LA; Lu J; Amine K
    Angew Chem Int Ed Engl; 2020 Dec; 59(51):22978-22982. PubMed ID: 33017504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation.
    Petit YK; Mourad E; Prehal C; Leypold C; Windischbacher A; Mijailovic D; Slugovc C; Borisov SM; Zojer E; Brutti S; Fontaine O; Freunberger SA
    Nat Chem; 2021 May; 13(5):465-471. PubMed ID: 33723377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic origin of low polarization in aprotic Na-O
    Ma S; McKee WC; Wang J; Guo L; Jansen M; Xu Y; Peng Z
    Phys Chem Chem Phys; 2017 May; 19(19):12375-12383. PubMed ID: 28462412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the LiI Redox Mediation in Aprotic Li-O
    Petrongari A; Piacentini V; Pierini A; Fattibene P; De Angelis C; Bodo E; Brutti S
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59348-59357. PubMed ID: 38090803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Li
    Liu L; Liu Y; Wang C; Peng X; Fang W; Hou Y; Wang J; Ye J; Wu Y
    Small Methods; 2022 Jan; 6(1):e2101280. PubMed ID: 35041287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme-Inspired Room-Temperature Lithium-Oxygen Chemistry via Reversible Cleavage and Formation of Dioxygen Bonds.
    Wang C; Zhang Z; Liu W; Zhang Q; Wang XG; Xie Z; Zhou Z
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):17856-17863. PubMed ID: 32745360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deactivation of redox mediators in lithium-oxygen batteries by singlet oxygen.
    Kwak WJ; Kim H; Petit YK; Leypold C; Nguyen TT; Mahne N; Redfern P; Curtiss LA; Jung HG; Borisov SM; Freunberger SA; Sun YK
    Nat Commun; 2019 Mar; 10(1):1380. PubMed ID: 30914647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.