These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38095654)

  • 1. Surfactant-Aided Stabilization of Individual Carbon Nanotubes in Water around the Critical Micelle Concentration.
    Wang P; Misra RP; Zhang C; Blankschtein D; Wang Y
    Langmuir; 2024 Jan; 40(1):159-169. PubMed ID: 38095654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the Surface Ordering of Self-Assembled Ionic Surfactants on Semiconducting Single-Walled Carbon Nanotubes: Concentration, Tube Diameter, and Counterions.
    Algoul ST; Sengupta S; Bui TT; Velarde L
    Langmuir; 2018 Aug; 34(31):9279-9288. PubMed ID: 30008207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of adsorbed surfactant in the reaction of aryl diazonium salts with single-walled carbon nanotubes.
    Hilmer AJ; McNicholas TP; Lin S; Zhang J; Wang QH; Mendenhall JD; Song C; Heller DA; Barone PW; Blankschtein D; Strano MS
    Langmuir; 2012 Jan; 28(2):1309-21. PubMed ID: 22136192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution.
    Blanch AJ; Lenehan CE; Quinton JS
    J Phys Chem B; 2010 Aug; 114(30):9805-11. PubMed ID: 20666522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: a molecular dynamics simulation study.
    Lin S; Blankschtein D
    J Phys Chem B; 2010 Dec; 114(47):15616-25. PubMed ID: 21050001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular insights into the surface morphology, layering structure, and aggregation kinetics of surfactant-stabilized graphene dispersions.
    Lin S; Shih CJ; Strano MS; Blankschtein D
    J Am Chem Soc; 2011 Aug; 133(32):12810-23. PubMed ID: 21736367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superacid-Surfactant Exchange: Enabling Nondestructive Dispersion of Full-Length Carbon Nanotubes in Water.
    Wang P; Kim M; Peng Z; Sun CF; Mok J; Lieberman A; Wang Y
    ACS Nano; 2017 Sep; 11(9):9231-9238. PubMed ID: 28792746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytotoxicity of single-walled carbon nanotubes suspended in various surfactants.
    Dong L; Joseph KL; Witkowski CM; Craig MM
    Nanotechnology; 2008 Jun; 19(25):255702. PubMed ID: 21828662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analyzing surfactant structures on length and chirality resolved (6,5) single-wall carbon nanotubes by analytical ultracentrifugation.
    Fagan JA; Zheng M; Rastogi V; Simpson JR; Khripin CY; Silvera Batista CA; Hight Walker AR
    ACS Nano; 2013 Apr; 7(4):3373-87. PubMed ID: 23530719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of stability of nanotube dispersions using surface tension isotherms.
    Sa V; Kornev KG
    Langmuir; 2011 Nov; 27(22):13451-60. PubMed ID: 21961935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes.
    Clark MD; Subramanian S; Krishnamoorti R
    J Colloid Interface Sci; 2011 Feb; 354(1):144-51. PubMed ID: 21084094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variations in bile salt surfactant structure allow tuning of the sorting of single-wall carbon nanotubes by aqueous two-phase extraction.
    Avramenko M; Defillet J; López Carrillo MÁ; Martinati M; Wenseleers W; Cambré S
    Nanoscale; 2022 Oct; 14(41):15484-15497. PubMed ID: 36226764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gemini surfactants as efficient dispersants of multiwalled carbon nanotubes: Interplay of molecular parameters on nanotube dispersibility and debundling.
    Abreu B; Rocha J; Fernandes RMF; Regev O; Furó I; Marques EF
    J Colloid Interface Sci; 2019 Jul; 547():69-77. PubMed ID: 30939346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of PL quenching during single-walled carbon nanotube rebundling and diameter-dependent surfactant interactions.
    McDonald TJ; Engtrakul C; Jones M; Rumbles G; Heben MJ
    J Phys Chem B; 2006 Dec; 110(50):25339-46. PubMed ID: 17165980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size.
    Parsons DF; Boström M; Lo Nostro P; Ninham BW
    Phys Chem Chem Phys; 2011 Jul; 13(27):12352-67. PubMed ID: 21670834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial Surfactant Ordering in Thin Films of SDS-Encapsulated Single-Walled Carbon Nanotubes.
    Das SK; Sengupta S; Velarde L
    J Phys Chem Lett; 2016 Jan; 7(2):320-6. PubMed ID: 26730991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localized Charge on Surfactant-Wrapped Single-Walled Carbon Nanotubes.
    Christensen EE; Amin M; Tumiel TM; Krauss TD
    J Phys Chem Lett; 2022 Nov; 13(46):10705-10712. PubMed ID: 36367529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solubilization of single-walled carbon nanotubes using a peptide aptamer in water below the critical micelle concentration.
    Li Z; Kameda T; Isoshima T; Kobatake E; Tanaka T; Ito Y; Kawamoto M
    Langmuir; 2015 Mar; 31(11):3482-8. PubMed ID: 25746134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dispersion of carbon nanotubes using mixed surfactants: experimental and molecular dynamics simulation studies.
    Sohrabi B; Poorgholami-Bejarpasi N; Nayeri N
    J Phys Chem B; 2014 Mar; 118(11):3094-103. PubMed ID: 24555914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of ciprofloxacin from aqueous solutions by ionic surfactant-modified carbon nanotubes.
    Li H; Wu W; Hao X; Wang S; You M; Han X; Zhao Q; Xing B
    Environ Pollut; 2018 Dec; 243(Pt A):206-217. PubMed ID: 30172990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.