These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38095711)

  • 1. Multi-parametric non-contrast cardiac magnetic resonance for the differentiation between cardiac amyloidosis and hypertrophic cardiomyopathy.
    Steen H; Montenbruck M; Kallifatidis A; André F; Frey N; Kelle S; Korosoglou G
    Clin Res Cardiol; 2024 Mar; 113(3):469-480. PubMed ID: 38095711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-parametric assessment of left ventricular hypertrophy using late gadolinium enhancement, T1 mapping and strain-encoded cardiovascular magnetic resonance.
    Giusca S; Steen H; Montenbruck M; Patel AR; Pieske B; Erley J; Kelle S; Korosoglou G
    J Cardiovasc Magn Reson; 2021 Jul; 23(1):92. PubMed ID: 34247623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CMR-based T1-mapping offers superior diagnostic value compared to longitudinal strain-based assessment of relative apical sparing in cardiac amyloidosis.
    Korthals D; Chatzantonis G; Bietenbeck M; Meier C; Stalling P; Yilmaz A
    Sci Rep; 2021 Jul; 11(1):15521. PubMed ID: 34330967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of CMR measured longitudinal strain and its association with late gadolinium enhancement in patients with cardiac amyloidosis and its mimics.
    Williams LK; Forero JF; Popovic ZB; Phelan D; Delgado D; Rakowski H; Wintersperger BJ; Thavendiranathan P
    J Cardiovasc Magn Reson; 2017 Aug; 19(1):61. PubMed ID: 28784140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Left and right ventricular strain using fast strain-encoded cardiovascular magnetic resonance for the diagnostic classification of patients with chronic non-ischemic heart failure due to dilated, hypertrophic cardiomyopathy or cardiac amyloidosis.
    Steen H; Giusca S; Montenbruck M; Patel AR; Pieske B; Florian A; Erley J; Kelle S; Korosoglou G
    J Cardiovasc Magn Reson; 2021 Apr; 23(1):45. PubMed ID: 33823860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Cardiac magnetic resonance-feature tracking technique can assess cardiac function and prognosis in patients with myocardial amyloidosis].
    Cui J; Li R; Liu X; Zhao Y; Zhang X; Liu Q; Li T
    Nan Fang Yi Ke Da Xue Xue Bao; 2023 Apr; 43(4):660-666. PubMed ID: 37202205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional significance of myocardial activity at
    Zhang Y; Dong Z; Wang L; Wang YL; Chen BX; Su Y; Zhao S; Yang MF
    Eur J Nucl Med Mol Imaging; 2023 Dec; 51(1):110-122. PubMed ID: 37642705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Native T1 mapping for the diagnosis of cardiac amyloidosis in patients with left ventricular hypertrophy.
    Lavall D; Vosshage NH; Geßner R; Stöbe S; Ebel S; Denecke T; Hagendorff A; Laufs U
    Clin Res Cardiol; 2023 Mar; 112(3):334-342. PubMed ID: 35355115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D myocardial deformation analysis from cine MRI as a marker of amyloid protein burden in cardiac amyloidosis: validation versus T1 mapping.
    Avitzur N; Satriano A; Afzal M; Narous M; Mikami Y; Hansen R; Dobko G; Flewitt J; Lydell CP; Howarth AG; Chow K; Fine NM; White JA
    Int J Cardiovasc Imaging; 2018 Dec; 34(12):1937-1946. PubMed ID: 30014362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of tissue tracking assessment by cardiovascular magnetic resonance for cardiac amyloidosis and hypertrophic cardiomyopathy.
    Jung HN; Kim SM; Lee JH; Kim Y; Lee SC; Jeon ES; Yong HS; Choe YH
    Acta Radiol; 2020 Jul; 61(7):885-893. PubMed ID: 31684748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Cardiac Magnetic Resonance Feature Tracking (CMR-FT) Analysis for Detection of Myocardial Fibrosis in Pediatric Hypertrophic Cardiomyopathy.
    Bogarapu S; Puchalski MD; Everitt MD; Williams RV; Weng HY; Menon SC
    Pediatr Cardiol; 2016 Apr; 37(4):663-73. PubMed ID: 26833321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnostic value of the novel CMR parameter "myocardial transit-time" (MyoTT) for the assessment of microvascular changes in cardiac amyloidosis and hypertrophic cardiomyopathy.
    Chatzantonis G; Bietenbeck M; Florian A; Meier C; Stalling P; Korthals D; Reinecke H; Yilmaz A
    Clin Res Cardiol; 2021 Jan; 110(1):136-145. PubMed ID: 32372287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histogram Analysis of Native T
    Wu CW; Wu R; Shi RY; An DA; Chen BH; Jiang M; Bacyinski A; Rahim A; Deen JM; Hu J; Han TT; Xu JR; Wu LM
    J Magn Reson Imaging; 2019 Mar; 49(3):668-677. PubMed ID: 30142234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of left ventricular global and segmental strain parameters by cardiovascular magnetic resonance tissue tracking in light-chain cardiac amyloidosis and hypertrophic cardiomyopathy.
    Wang F; Xu X; Wang Q; Yu D; Lv L; Wang Q
    Quant Imaging Med Surg; 2023 Jan; 13(1):449-461. PubMed ID: 36620161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The diagnostic value of multiparameter cardiovascular magnetic resonance for early detection of light-chain amyloidosis from hypertrophic cardiomyopathy patients.
    Yue X; Yang L; Wang R; Chan Q; Yang Y; Wu X; Ruan X; Zhang Z; Wei Y; Wang F
    Front Cardiovasc Med; 2022; 9():1017097. PubMed ID: 36330005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced myocardial characterization in hypertrophic cardiomyopathy: feasibility of CMR-based feature tracking strain analysis in a case-control study.
    Yang L; Zhang L; Cao S; Gao C; Xu H; Song T; Zhang X; Wang K
    Eur Radiol; 2020 Nov; 30(11):6118-6128. PubMed ID: 32588208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cellular and extracellular pathology assessed by T1 mapping on regional contractile function in hypertrophic cardiomyopathy.
    Swoboda PP; McDiarmid AK; Erhayiem B; Law GR; Garg P; Broadbent DA; Ripley DP; Musa TA; Dobson LE; Foley JR; Fent GJ; Page SP; Greenwood JP; Plein S
    J Cardiovasc Magn Reson; 2017 Feb; 19(1):16. PubMed ID: 28215181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diastolic dysfunction assessed by cardiac magnetic resonance imaging tissue tracking on normal-thickness wall segments in hypertrophic cardiomyopathy.
    Qiao J; Zhao P; Lu J; Huang L; Ma X; Zhou X; Xia L
    BMC Med Imaging; 2023 Jan; 23(1):7. PubMed ID: 36624416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. T1 Mapping in Discrimination of Hypertrophic Phenotypes: Hypertensive Heart Disease and Hypertrophic Cardiomyopathy: Findings From the International T1 Multicenter Cardiovascular Magnetic Resonance Study.
    Hinojar R; Varma N; Child N; Goodman B; Jabbour A; Yu CY; Gebker R; Doltra A; Kelle S; Khan S; Rogers T; Arroyo Ucar E; Cummins C; Carr-White G; Nagel E; Puntmann VO
    Circ Cardiovasc Imaging; 2015 Dec; 8(12):. PubMed ID: 26659373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship of basal-septal fibrosis with LV outflow tract obstruction in hypertrophic cardiomyopathy: insights from cardiac magnetic resonance analysis.
    Nakamura T; Iwanaga Y; Yasuda M; Kawamura T; Miyaji Y; Morooka H; Miyazaki S
    Int J Cardiovasc Imaging; 2016 Apr; 32(4):613-20. PubMed ID: 26589516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.