These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38095968)

  • 1. Multiphasic Continuous-Flow Reactors for Handling Gaseous Reagents in Organic Synthesis: Enhancing Efficiency and Safety in Chemical Processes.
    Laporte AAH; Masson TM; Zondag SDA; Noël T
    Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202316108. PubMed ID: 38095968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Concept of Chemical Generators: On-Site On-Demand Production of Hazardous Reagents in Continuous Flow.
    Dallinger D; Gutmann B; Kappe CO
    Acc Chem Res; 2020 Jul; 53(7):1330-1341. PubMed ID: 32543830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.
    Brzozowski M; O'Brien M; Ley SV; Polyzos A
    Acc Chem Res; 2015 Feb; 48(2):349-62. PubMed ID: 25611216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of Stop-flow Micro-tubing Reactors for the Development of Organic Transformations.
    Toh RW; Li JS; Wu J
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29364262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in the Multistep Continuous Preparation of APIs and Fine Chemicals.
    de Castro PP; Batista GMF; Amarante GW; Brocksom TJ; de Oliveira KT
    Curr Top Med Chem; 2023; 23(11):970-989. PubMed ID: 37005526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerating gas-liquid chemical reactions in flow.
    Han S; Kashfipour MA; Ramezani M; Abolhasani M
    Chem Commun (Camb); 2020 Sep; 56(73):10593-10606. PubMed ID: 32785297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printing to Increase the Flexibility of the Chemical Synthesis of Biologically Active Molecules: Design of On-Demand Gas Generation Reactors.
    Erokhin KS; Gordeev EG; Samoylenko DE; Rodygin KS; Ananikov VP
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients.
    Gutmann B; Cantillo D; Kappe CO
    Angew Chem Int Ed Engl; 2015 Jun; 54(23):6688-728. PubMed ID: 25989203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Development and Application of Two-Chamber Reactors and Carbon Monoxide Precursors for Safe Carbonylation Reactions.
    Friis SD; Lindhardt AT; Skrydstrup T
    Acc Chem Res; 2016 Apr; 49(4):594-605. PubMed ID: 26999377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reworking Organic Synthesis for the Modern Age: Synthetic Strategies Based on Continuous-Flow Addition and Condensation Reactions with Heterogeneous Catalysts.
    Yoo WJ; Ishitani H; Saito Y; Laroche B; Kobayashi S
    J Org Chem; 2020 Apr; 85(8):5132-5145. PubMed ID: 32069417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry.
    Baumann M; Baxendale IR
    Beilstein J Org Chem; 2015; 11():1194-219. PubMed ID: 26425178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Fundamentals Behind the Use of Flow Reactors in Electrochemistry.
    Noël T; Cao Y; Laudadio G
    Acc Chem Res; 2019 Oct; 52(10):2858-2869. PubMed ID: 31573791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diazo compounds in continuous-flow technology.
    Müller ST; Wirth T
    ChemSusChem; 2015 Jan; 8(2):245-50. PubMed ID: 25488620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Olefin Metathesis in Continuous Flow Reactor Employing Polar Ruthenium Catalyst and Soluble Metal Scavenger for Instant Purification of Products of Pharmaceutical Interest.
    Toh RW; Patrzałek M; Nienałtowski T; Piątkowski J; Kajetanowicz A; Wu J; Grela K
    ACS Sustain Chem Eng; 2021 Dec; 9(48):16450-16458. PubMed ID: 34900446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Step Continuous-Flow Organic Synthesis: Opportunities and Challenges.
    Jiao J; Nie W; Yu T; Yang F; Zhang Q; Aihemaiti F; Yang T; Liu X; Wang J; Li P
    Chemistry; 2021 Mar; 27(15):4817-4838. PubMed ID: 33034923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiphase Methods in Organic Electrosynthesis.
    Marken F; Wadhawan JD
    Acc Chem Res; 2019 Dec; 52(12):3325-3338. PubMed ID: 31762259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A systematic reactor design approach for the synthesis of active pharmaceutical ingredients.
    Emenike VN; Schenkendorf R; Krewer U
    Eur J Pharm Biopharm; 2018 May; 126():75-88. PubMed ID: 28536050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous processes for the production of pharmaceutical intermediates and active pharmaceutical ingredients.
    LaPorte TL; Wang C
    Curr Opin Drug Discov Devel; 2007 Nov; 10(6):738-45. PubMed ID: 17987525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous Multistage Synthesis and Functionalization of Sub-100 nm Silica Nanoparticles in 3D-Printed Continuous Stirred-Tank Reactor Cascades.
    Lignos I; Ow H; Lopez JP; McCollum D; Zhang H; Imbrogno J; Shen Y; Chang S; Wang W; Jensen KF
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6699-6706. PubMed ID: 31922389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From discovery to production: scale-out of continuous flow meso reactors.
    Styring P; Parracho AI
    Beilstein J Org Chem; 2009 Jun; 5():29. PubMed ID: 19590741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.