These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38096319)

  • 21. Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT.
    Rodgers H; Bosomworth H; Krebs HI; van Wijck F; Howel D; Wilson N; Finch T; Alvarado N; Ternent L; Fernandez-Garcia C; Aird L; Andole S; Cohen DL; Dawson J; Ford GA; Francis R; Hogg S; Hughes N; Price CI; Turner DL; Vale L; Wilkes S; Shaw L
    Health Technol Assess; 2020 Oct; 24(54):1-232. PubMed ID: 33140719
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of Involuntary Components of Human Arm Impedance in Multi-Joint Movements via Feedback Jerk Isolation.
    Börner H; Endo S; Hirche S
    Front Neurosci; 2020; 14():459. PubMed ID: 32523504
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EMG-driven fatigue-based self-adapting admittance control of a hand rehabilitation robot.
    Mashayekhi M; Moghaddam MM
    J Biomech; 2022 Jun; 138():111104. PubMed ID: 35561557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of self-selected postures to regulate multi-joint stiffness during unconstrained tasks.
    Trumbower RD; Krutky MA; Yang BS; Perreault EJ
    PLoS One; 2009; 4(5):e5411. PubMed ID: 19412540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stiffness-based tuning of an adaptive impedance controller for robot-assisted rehabilitation of upper limbs.
    Maldonado B; Mendoza M; Bonilla I; Reyna-Gutiérrez I
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3578-81. PubMed ID: 26737066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimating Human Wrist Stiffness during a Tooling Task.
    Phan GH; Hansen C; Tommasino P; Budhota A; Mohan DM; Hussain A; Burdet E; Campolo D
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32521678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive training algorithm for robot-assisted upper-arm rehabilitation, applicable to individualised and therapeutic human-robot interaction.
    Chemuturi R; Amirabdollahian F; Dautenhahn K
    J Neuroeng Rehabil; 2013 Sep; 10():102. PubMed ID: 24073670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measuring the dynamic impedance of the human arm without a force sensor.
    Dyck M; Tavakoli M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650349. PubMed ID: 24187168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. End-point impedance measurements across dominant and nondominant hands and robotic assistance with directional damping.
    Erden MS; Billard A
    IEEE Trans Cybern; 2015 Jun; 45(6):1146-57. PubMed ID: 25148680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimating Human Upper Limb Impedance Parameters From a State-of-the-Art Computational Neuromusculoskeletal Model.
    Asgari M; Crouch DL
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4820-4823. PubMed ID: 34892288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fundamental characteristics of human limb electrical impedance for biodynamic analysis.
    Nakamura T; Yamamoto Y; Yamamoto T; Tsuji H
    Med Biol Eng Comput; 1992 Sep; 30(5):465-72. PubMed ID: 1293436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development and Electromyographic Validation of a Compliant Human-Robot Interaction Controller for Cooperative and Personalized Neurorehabilitation.
    Dalla Gasperina S; Longatelli V; Braghin F; Pedrocchi A; Gandolla M
    Front Neurorobot; 2021; 15():734130. PubMed ID: 35115915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rendered and Characterized Closed-Loop Accuracy of Impedance-Type Haptic Displays.
    Colonnese N; Siu AF; Abbott CM; Okamura AM
    IEEE Trans Haptics; 2015; 8(4):434-46. PubMed ID: 26208363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Issues in impedance selection and input devices for multijoint powered orthotics.
    Lemay MA; Hogan N; van Dorsten JW
    IEEE Trans Rehabil Eng; 1998 Mar; 6(1):102-5. PubMed ID: 9535529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impedance control reduces instability that arises from motor noise.
    Selen LP; Franklin DW; Wolpert DM
    J Neurosci; 2009 Oct; 29(40):12606-16. PubMed ID: 19812335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arm stiffness during assisted movement after stroke: the influence of visual feedback and training.
    Piovesan D; Morasso P; Giannoni P; Casadio M
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):454-65. PubMed ID: 23193322
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive Human Force Scaling via Admittance Control for Physical Human-Robot Interaction.
    Hamad YM; Aydin Y; Basdogan C
    IEEE Trans Haptics; 2021; 14(4):750-761. PubMed ID: 33826517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impedance Variation and Learning Strategies in Human-Robot Interaction.
    Sharifi M; Zakerimanesh A; Mehr JK; Torabi A; Mushahwar VK; Tavakoli M
    IEEE Trans Cybern; 2022 Jul; 52(7):6462-6475. PubMed ID: 33449901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stochastic estimation of arm mechanical impedance during robotic stroke rehabilitation.
    Palazzolo JJ; Ferraro M; Krebs HI; Lynch D; Volpe BT; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):94-103. PubMed ID: 17436881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.