These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38096319)

  • 41. Endpoint stiffness of the arm is directionally tuned to instability in the environment.
    Franklin DW; Liaw G; Milner TE; Osu R; Burdet E; Kawato M
    J Neurosci; 2007 Jul; 27(29):7705-16. PubMed ID: 17634365
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On the Value of Estimating Human Arm Stiffness during Virtual Teleoperation with Robotic Manipulators.
    Buzzi J; Ferrigno G; Jansma JM; De Momi E
    Front Neurosci; 2017; 11():528. PubMed ID: 29018319
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nonlinear time delay estimation based model reference adaptive impedance control for an upper-limb human-robot interaction.
    Omrani J; Moghaddam MM
    Proc Inst Mech Eng H; 2022 Mar; 236(3):385-398. PubMed ID: 34720012
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of robot therapy on upper body kinematics and arm function in persons post stroke: a pilot randomized controlled trial.
    Carpinella I; Lencioni T; Bowman T; Bertoni R; Turolla A; Ferrarin M; Jonsdottir J
    J Neuroeng Rehabil; 2020 Jan; 17(1):10. PubMed ID: 32000790
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An intelligent control framework for robot-aided resistance training using hybrid system modeling and impedance estimation.
    Xu G; Guo X; Zhai Y; Li H
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3602-6. PubMed ID: 26737072
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Segmentation of endpoint trajectories does not imply segmented control.
    Sternad D; Schaal S
    Exp Brain Res; 1999 Jan; 124(1):118-36. PubMed ID: 9928796
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impedance is modulated to meet accuracy demands during goal-directed arm movements.
    Selen LP; Beek PJ; van Dieën JH
    Exp Brain Res; 2006 Jun; 172(1):129-38. PubMed ID: 16372169
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of information-movement couplings in a rhythmical ball-bouncing task: from space- to time-related information.
    Bazile C; Benguigui N; Siegler IA
    Exp Brain Res; 2016 Jan; 234(1):173-83. PubMed ID: 26410820
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The influence of the dynamic transformation of a sliding lever on aiming errors.
    Heuer H; Sülzenbrück S
    Neuroscience; 2012 Apr; 207():137-47. PubMed ID: 22309808
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bayesian Estimation of Human Impedance and Motion Intention for Human-Robot Collaboration.
    Yu X; He W; Li Y; Xue C; Li J; Zou J; Yang C
    IEEE Trans Cybern; 2021 Apr; 51(4):1822-1834. PubMed ID: 31647450
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Position Based Impedance Control Strategy for a Lower Limb Rehabilitation Robot.
    Liang X; Wang W; Hou ZG; Ren S; Wang J; Shi W; Peng L; Su T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():437-441. PubMed ID: 31945932
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impedance characteristics of a neuromusculoskeletal model of the human arm II. Movement control.
    Stroeve S
    Biol Cybern; 1999 Nov; 81(5-6):495-504. PubMed ID: 10592023
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Robotic tests for position sense and movement discrimination in the upper limb reveal that they each are highly reproducible but not correlated in healthy individuals.
    Lowrey CR; Blazevski B; Marnet JL; Bretzke H; Dukelow SP; Scott SH
    J Neuroeng Rehabil; 2020 Jul; 17(1):103. PubMed ID: 32711540
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Upper-Limb Rehabilitation of Patients with Neuromotor Deficits Using Impedance-Based Control of a 6-DOF Robot.
    Behidj A; Achiche S; Mohebbi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082642
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Effect of Haptic Guidance on Learning a Hybrid Rhythmic-Discrete Motor Task.
    Marchal-Crespo L; Bannwart M; Riener R; Vallery H
    IEEE Trans Haptics; 2015; 8(2):222-34. PubMed ID: 25438325
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biological Plausibility of Arm Postures Influences the Controllability of Robotic Arm Teleoperation.
    Mick S; Badets A; Oudeyer PY; Cattaert D; De Rugy A
    Hum Factors; 2022 Mar; 64(2):372-384. PubMed ID: 32809867
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Smooth leader or sharp follower? Playing the mirror game with a robot.
    Kashi S; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):147-159. PubMed ID: 29036853
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Concurrent Control of Motion and Contact Force in the Presence of Predictable Disturbances.
    Piovesan D; Kolesnikov M; Lynch K; Mussa-Ivaldi FA
    J Mech Robot; 2019 Dec; 11(6):060903. PubMed ID: 34163561
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interactions between limb and environmental mechanics influence stretch reflex sensitivity in the human arm.
    Krutky MA; Ravichandran VJ; Trumbower RD; Perreault EJ
    J Neurophysiol; 2010 Jan; 103(1):429-40. PubMed ID: 19906880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.