These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 38096422)

  • 1. Ultrasound-Induced Cascade Amplification in a Mechanoluminescent Nanotransducer for Enhanced Sono-Optogenetic Deep Brain Stimulation.
    Wang W; Kevin Tang KW; Pyatnitskiy I; Liu X; Shi X; Huo D; Jeong J; Wynn T; Sangani A; Baker A; Hsieh JC; Lozano AR; Artman B; Fenno L; Buch VP; Wang H
    ACS Nano; 2023 Dec; 17(24):24936-24946. PubMed ID: 38096422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Principles and applications of sono-optogenetics.
    Yang F; Kim SJ; Wu X; Cui H; Hahn SK; Hong G
    Adv Drug Deliv Rev; 2023 Mar; 194():114711. PubMed ID: 36708773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics.
    Wu X; Zhu X; Chong P; Liu J; Andre LN; Ong KS; Brinson K; Mahdi AI; Li J; Fenno LE; Wang H; Hong G
    Proc Natl Acad Sci U S A; 2019 Dec; 116(52):26332-26342. PubMed ID: 31811026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound-Triggered In Situ Photon Emission for Noninvasive Optogenetics.
    Wang W; Wu X; Kevin Tang KW; Pyatnitskiy I; Taniguchi R; Lin P; Zhou R; Capocyan SLC; Hong G; Wang H
    J Am Chem Soc; 2023 Jan; 145(2):1097-1107. PubMed ID: 36606703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palette of Rechargeable Mechanoluminescent Fluids Produced by a Biomineral-Inspired Suppressed Dissolution Approach.
    Yang F; Wu X; Cui H; Jiang S; Ou Z; Cai S; Hong G
    J Am Chem Soc; 2022 Oct; 144(40):18406-18418. PubMed ID: 36190898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of mechanoluminescent nanotransducers by focused ultrasound enables light delivery to deep-seated tissue in vivo.
    Jiang S; Wu X; Yang F; Rommelfanger NJ; Hong G
    Nat Protoc; 2023 Dec; 18(12):3787-3820. PubMed ID: 37914782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics.
    Chen S; Weitemier AZ; Zeng X; He L; Wang X; Tao Y; Huang AJY; Hashimotodani Y; Kano M; Iwasaki H; Parajuli LK; Okabe S; Teh DBL; All AH; Tsutsui-Kimura I; Tanaka KF; Liu X; McHugh TJ
    Science; 2018 Feb; 359(6376):679-684. PubMed ID: 29439241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared Deep Brain Stimulation in Living Mice.
    Chen S
    Methods Mol Biol; 2020; 2173():71-82. PubMed ID: 32651910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Magnetism-Optogenetic" System for Wireless and Highly Sensitive Neuromodulation.
    Tian Y; Zhang Y; Zhang X; Pan H; Zhang L; Liu S; Chen Y; Su L; Zhao P; Chang J; Wang H
    Adv Healthc Mater; 2022 Feb; 11(3):e2102023. PubMed ID: 34812596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upconversion Nanoparticle-Mediated Optogenetics.
    Yi Z; All AH; Liu X
    Adv Exp Med Biol; 2021; 1293():641-657. PubMed ID: 33398847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wireless Optogenetic Modulation of Cortical Neurons Enabled by Radioluminescent Nanoparticles.
    Chen Z; Tsytsarev V; Finfrock YZ; Antipova OA; Cai Z; Arakawa H; Lischka FW; Hooks BM; Wilton R; Wang D; Liu Y; Gaitan B; Tao Y; Chen Y; Erzurumlu RS; Yang H; Rozhkova EA
    ACS Nano; 2021 Mar; 15(3):5201-5208. PubMed ID: 33625219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-scanning fiber-optic near-infrared beam led to two-photon optogenetic stimulation in-vivo.
    Dhakal KR; Gu L; Shivalingaiah S; Dennis TS; Morris-Bobzean SA; Li T; Perrotti LI; Mohanty SK
    PLoS One; 2014; 9(11):e111488. PubMed ID: 25383687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional ultrasound imaging of the spreading activity following optogenetic stimulation of the rat visual cortex.
    Provansal M; Labernède G; Joffrois C; Rizkallah A; Goulet R; Valet M; Deschamps W; Ferrari U; Chaffiol A; Dalkara D; Sahel JA; Tanter M; Picaud S; Gauvain G; Arcizet F
    Sci Rep; 2021 Jun; 11(1):12603. PubMed ID: 34131223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional nanotransducer-mediated wireless neural modulation techniques.
    Li G; Li D; Lan B; Chen Y; Zhang W; Li B; Liu Y; Fan H; Lu H
    Phys Med Biol; 2024 Jul; 69(14):. PubMed ID: 38959904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency-Specific Optogenetic Deep Brain Stimulation of Subthalamic Nucleus Improves Parkinsonian Motor Behaviors.
    Yu C; Cassar IR; Sambangi J; Grill WM
    J Neurosci; 2020 May; 40(22):4323-4334. PubMed ID: 32312888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards minimally invasive deep brain stimulation and imaging: A near-infrared upconversion approach.
    Chen S; Wu J; Cai A; Gonzalez N; Yin R
    Neurosci Res; 2020 Mar; 152():59-65. PubMed ID: 31987879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotransducer-Enabled Deep-Brain Neuromodulation with NIR-II Light.
    Wu X; Yang F; Cai S; Pu K; Hong G
    ACS Nano; 2023 May; 17(9):7941-7952. PubMed ID: 37079455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoacoustic: A Versatile Nongenetic Method for High-Precision Neuromodulation.
    Du Z; Chen G; Li Y; Zheng N; Cheng JX; Yang C
    Acc Chem Res; 2024 Jun; 57(11):1595-1607. PubMed ID: 38759211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic Manipulation of Neuronal Activity to Modulate Behavior in Freely Moving Mice.
    Berg L; Gerdey J; Masseck OA
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33191936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrodeposited NaYF
    Zhang X; Ding J; Zou L; Tian H; Fang Y; Wang J
    J Mater Chem B; 2023 Jun; 11(24):5565-5573. PubMed ID: 36939747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.