These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38096544)

  • 21. Controllable superlubricity of glycerol solution via environment humidity.
    Chen Z; Liu Y; Zhang S; Luo J
    Langmuir; 2013 Sep; 29(38):11924-30. PubMed ID: 23980703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Boundary Slip of Oil Molecules at MoS
    Li J; Li J; Yi S; Wang K
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):8644-8653. PubMed ID: 35119817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of the Molecular Structure of 1,3-Diketones on the Realization of Oil-Based Superlubricity on Steel/Steel Friction Pairs.
    Du S; Zhang C; Luo Z
    Langmuir; 2024 Jan; 40(1):805-817. PubMed ID: 38134349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D-Printed Topological MoS
    Zhao Y; Mei H; Chang P; Yang Y; Huang W; Liu Y; Cheng L; Zhang L
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34984-34995. PubMed ID: 34278775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing the hydration friction of ionic interfaces at the atomic scale.
    Li Z; Liu Q; Zhang D; Wang Y; Zhang Y; Li Q; Dong M
    Nanoscale Horiz; 2022 Mar; 7(4):368-375. PubMed ID: 35195643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of Abrasive Particles on Liquid Superlubricity and Mechanisms for Their Removal.
    Wen X; Bai P; Li Y; Cao H; Li S; Wang B; Fang J; Meng Y; Ma L; Tian Y
    Langmuir; 2021 Mar; 37(12):3628-3636. PubMed ID: 33733780
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superlubricity of glycerol by self-sustained chemical polishing.
    Long Y; Bouchet MB; Lubrecht T; Onodera T; Martin JM
    Sci Rep; 2019 Apr; 9(1):6286. PubMed ID: 31000766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tribochemistry and superlubricity induced by hydrogen ions.
    Li J; Zhang C; Sun L; Lu X; Luo J
    Langmuir; 2012 Nov; 28(45):15816-23. PubMed ID: 23078271
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superlubricity of Graphite Sliding against Graphene Nanoflake under Ultrahigh Contact Pressure.
    Li J; Li J; Luo J
    Adv Sci (Weinh); 2018 Nov; 5(11):1800810. PubMed ID: 30479926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-Adaptive Macroscale Superlubricity Based on the Tribocatalytic Properties of Partially Oxidized Black Phosphorus.
    Gao K; Bin W; Berman D; Ren Y; Luo J; Xie G
    Nano Lett; 2023 Aug; 23(15):6823-6830. PubMed ID: 37486802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shear-Induced Interfacial Structural Conversion Triggers Macroscale Superlubricity: From Black Phosphorus Nanoflakes to Phosphorus Oxide.
    Liu Y; Li J; Li J; Yi S; Ge X; Zhang X; Luo J
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31947-31956. PubMed ID: 34190525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of a superlubricity nanometer interface by Raman spectroscopy.
    Shi Y; Yang X; Liu B; Dong H; Zheng Q
    Nanotechnology; 2016 Aug; 27(32):325701. PubMed ID: 27348089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural superlubricity in 2D van der Waals heterojunctions.
    Yuan J; Yang R; Zhang G
    Nanotechnology; 2021 Dec; 33(10):. PubMed ID: 34229304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Friction. Macroscale superlubricity enabled by graphene nanoscroll formation.
    Berman D; Deshmukh SA; Sankaranarayanan SK; Erdemir A; Sumant AV
    Science; 2015 Jun; 348(6239):1118-22. PubMed ID: 25977372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions.
    Song Y; Mandelli D; Hod O; Urbakh M; Ma M; Zheng Q
    Nat Mater; 2018 Oct; 17(10):894-899. PubMed ID: 30061730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superlubricity achieved with mixtures of polyhydroxy alcohols and acids.
    Li J; Zhang C; Luo J
    Langmuir; 2013 Apr; 29(17):5239-45. PubMed ID: 23597021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduction of friction stress of ethylene glycol by attached hydrogen ions.
    Li J; Zhang C; Deng M; Luo J
    Sci Rep; 2014 Nov; 4():7226. PubMed ID: 25428584
    [TBL] [Abstract][Full Text] [Related]  

  • 38. AFM Study on Superlubricity between Ti6Al4V/Polymer Surfaces Achieved with Liposomes.
    Duan Y; Liu Y; Li J; Feng S; Wen S
    Biomacromolecules; 2019 Apr; 20(4):1522-1529. PubMed ID: 30835459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissipation Mechanisms and Superlubricity in Solid Lubrication by Wet-Transferred Solution-Processed Graphene Flakes: Implications for Micro Electromechanical Devices.
    Buzio R; Gerbi A; Bernini C; Repetto L; Silva A; Vanossi A
    ACS Appl Nano Mater; 2023 Jul; 6(13):11443-11454. PubMed ID: 37469503
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of biological liquid superlubricity of Brasenia schreberi mucilage.
    Liu P; Liu Y; Yang Y; Chen Z; Li J; Luo J
    Langmuir; 2014 Apr; 30(13):3811-6. PubMed ID: 24645739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.