These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38096608)

  • 21. A 3D printed polylactic acid-Baghdadite nanocomposite scaffold coated with microporous chitosan-VEGF for bone regeneration applications.
    Salehi S; Tavakoli M; Mirhaj M; Varshosaz J; Labbaf S; Karbasi S; Jafarpour F; Kazemi N; Salehi S; Mehrjoo M; Emami E
    Carbohydr Polym; 2023 Jul; 312():120787. PubMed ID: 37059527
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation.
    Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H
    Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of polyethylene glycol on printability, physical and mechanical properties and osteogenic potential of 3D-printed poly (l-lactic acid)/polyethylene glycol scaffold for bone tissue engineering.
    Salehi S; Ghomi H; Hassanzadeh-Tabrizi SA; Koupaei N; Khodaei M
    Int J Biol Macromol; 2022 Nov; 221():1325-1334. PubMed ID: 36087749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D Printed Gelatin/Sodium Alginate Hydrogel Scaffolds Doped with Nano-Attapulgite for Bone Tissue Repair.
    Liu C; Qin W; Wang Y; Ma J; Liu J; Wu S; Zhao H
    Int J Nanomedicine; 2021; 16():8417-8432. PubMed ID: 35002236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis.
    Cheng CH; Chen YW; Kai-Xing Lee A; Yao CH; Shie MY
    J Mater Sci Mater Med; 2019 Jun; 30(7):78. PubMed ID: 31222566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores.
    Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y
    Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Osteoregenerative Potential of 3D-Printed Poly
    Lawrence LM; Salary RR; Miller V; Valluri A; Denning KL; Case-Perry S; Abdelgaber K; Smith S; Claudio PP; Day JB
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902373
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D-Printed lattice-inspired composites for bone reconstruction.
    Guo W; Xu H; Liu D; Dong L; Liang T; Li B; Meng B; Chen S
    J Mater Chem B; 2023 Aug; 11(31):7353-7363. PubMed ID: 37522170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D printed hybrid bone constructs of PCL and dental pulp stem cells loaded GelMA.
    Buyuksungur S; Hasirci V; Hasirci N
    J Biomed Mater Res A; 2021 Dec; 109(12):2425-2437. PubMed ID: 34033241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-Dimensional Printed Polylactic Acid Scaffolds Promote Bone-like Matrix Deposition in Vitro.
    Fairag R; Rosenzweig DH; Ramirez-Garcialuna JL; Weber MH; Haglund L
    ACS Appl Mater Interfaces; 2019 May; 11(17):15306-15315. PubMed ID: 30973708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering-an embedding model with plasticity for incorporation of additives.
    Manjunath KS; Sridhar K; Gopinath V; Sankar K; Sundaram A; Gupta N; Shiek ASSJ; Shantanu PS
    Biomed Mater; 2020 Dec; 16(1):015028. PubMed ID: 33331292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.
    Wang L; Wu Y; Hu T; Ma PX; Guo B
    Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Design of 3D-Printed Polylactic Acid-Bioglass Composite Scaffold: A Potential Implant Material for Bone Tissue Engineering.
    Sultan S; Thomas N; Varghese M; Dalvi Y; Joy S; Hall S; Mathew AP
    Molecules; 2022 Oct; 27(21):. PubMed ID: 36364053
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D direct printing of composite bone scaffolds containing polylactic acid and spray dried mesoporous bioactive glass-ceramic microparticles.
    Saberi A; Behnamghader A; Aghabarari B; Yousefi A; Majda D; Huerta MVM; Mozafari M
    Int J Biol Macromol; 2022 May; 207():9-22. PubMed ID: 35181332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis.
    Ye Q; Zhang Y; Dai K; Chen X; Read HM; Zeng L; Hang F
    J Mater Sci Mater Med; 2020 Aug; 31(9):77. PubMed ID: 32816067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D printing of complicated GelMA-coated Alginate/Tri-calcium silicate scaffold for accelerated bone regeneration.
    Beheshtizadeh N; Farzin A; Rezvantalab S; Pazhouhnia Z; Lotfibakhshaiesh N; Ai J; Noori A; Azami M
    Int J Biol Macromol; 2023 Feb; 229():636-653. PubMed ID: 36586652
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Material extrusion additive manufacturing of poly(lactic acid)/Ti6Al4V@calcium phosphate core-shell nanocomposite scaffolds for bone tissue applications.
    Zarei M; Hasanzadeh Azar M; Sayedain SS; Shabani Dargah M; Alizadeh R; Arab M; Askarinya A; Kaviani A; Beheshtizadeh N; Azami M
    Int J Biol Macromol; 2024 Jan; 255():128040. PubMed ID: 37981284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Additive manufacturing of PLA-Mg composite scaffolds for hard tissue engineering applications.
    Bakhshi R; Mohammadi-Zerankeshi M; Mehrabi-Dehdezi M; Alizadeh R; Labbaf S; Abachi P
    J Mech Behav Biomed Mater; 2023 Feb; 138():105655. PubMed ID: 36621086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.
    Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G
    Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering.
    Dutta SD; Hexiu J; Patel DK; Ganguly K; Lim KT
    Int J Biol Macromol; 2021 Jan; 167():644-658. PubMed ID: 33285198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.