These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38096723)

  • 1. Effect of varying hydrologic regime on seasonal total maximum daily loads (TDML) in an agricultural watershed.
    Rai S; Jain S; Rallapalli S; Magner J; Singh AP; Goonetilleke A
    Water Res; 2024 Feb; 249():120998. PubMed ID: 38096723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A flow-weighted approach to generate daily total phosphorus loads in streams based on seasonal loads.
    Ouyang Y
    Environ Monit Assess; 2021 Jun; 193(7):422. PubMed ID: 34129110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Streamflow duration curve to explain nutrient export in Midwestern USA watersheds: Implication for water quality achievements.
    Kamrath B; Yuan Y
    J Environ Manage; 2023 Jun; 336():117598. PubMed ID: 36871454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stream sediment and nutrient loads in the Tahoe Basin--estimated vs monitored loads for TMDL "crediting".
    Grismer ME
    Environ Monit Assess; 2013 Sep; 185(9):7883-94. PubMed ID: 23435852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of sampling frequency and load calculation methods on quantification of annual river nutrient and suspended solids loads.
    Elwan A; Singh R; Patterson M; Roygard J; Horne D; Clothier B; Jones G
    Environ Monit Assess; 2018 Jan; 190(2):78. PubMed ID: 29327177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TMDL for phosphorus and contributing factors in subtropical watersheds of southern China.
    Meng C; Li Y; Wang Y; Yang W; Jiao J; Wang M; Zhang M; Li Y; Wu J
    Environ Monit Assess; 2015 Aug; 187(8):514. PubMed ID: 26202816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bayesian approach for calculating variable total maximum daily loads and uncertainty assessment.
    Chen D; Dahlgren RA; Shen Y; Lu J
    Sci Total Environ; 2012 Jul; 430():59-67. PubMed ID: 22634550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing uncertainty in annual nitrogen, phosphorus, and suspended sediment load estimates in three agricultural streams using a 21-year dataset.
    Kelly PT; Vanni MJ; Renwick WH
    Environ Monit Assess; 2018 Jan; 190(2):91. PubMed ID: 29354871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined inverse modeling approach and load duration curve method for variable nitrogen total maximum daily load development in an agricultural watershed.
    Chen D; Lu J; Wang H; Shen Y; Gong D
    Environ Sci Pollut Res Int; 2011 Sep; 18(8):1405-13. PubMed ID: 21487647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal variations of nitrogen and phosphorus retention in an agricultural drainage river in East China.
    Chen D; Lu J; Wang H; Shen Y; Kimberley MO
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):312-20. PubMed ID: 19795144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructing historical changes in phosphorus inputs to rivers from point and nonpoint sources in a rapidly developing watershed in eastern China, 1980-2010.
    Chen D; Hu M; Guo Y; Dahlgren RA
    Sci Total Environ; 2015 Nov; 533():196-204. PubMed ID: 26163441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing TMDL effectiveness using flow-adjusted concentrations: a case study of the Neuse River, North Carolina.
    Stow CA; Borsuk ME
    Environ Sci Technol; 2003 May; 37(10):2043-50. PubMed ID: 12785506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of sampling strategy in rivers on load estimation for Nitrate-Nitrogen and total Phosphorus in a lowland agricultural area.
    Sun X; Hörmann G; Schmalz B; Fohrer N
    Water Res; 2022 Oct; 224():119081. PubMed ID: 36130452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A screening-level modeling approach to estimate nitrogen loading and standard exceedance risk, with application to the Tippecanoe River watershed, Indiana.
    Yang G; Best EP; Whiteaker T; Teklitz A; Yeghiazarian L
    J Environ Manage; 2014 Mar; 135():1-10. PubMed ID: 24486566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyzing the impact of agricultural BMPs on stream nutrient load and biotic health in the Susquehanna-Chemung basin of New York.
    Kua ZX; Davis CM; Townley LA; Stella JC; Shaw SB
    J Environ Manage; 2023 Jun; 335():117521. PubMed ID: 36870193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayesian approach for evaluation of the effect of water quality model parameter uncertainty on TMDLs: A case study of Miyun Reservoir.
    Liang S; Jia H; Xu C; Xu T; Melching C
    Sci Total Environ; 2016 Aug; 560-561():44-54. PubMed ID: 27093122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and temporal trends in estimates of nutrient and suspended sediment loads in the Ishikari River, Japan, 1985 to 2010.
    Duan W; Takara K; He B; Luo P; Nover D; Yamashiki Y
    Sci Total Environ; 2013 Sep; 461-462():499-508. PubMed ID: 23751333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying groundwater phosphorus flux to rivers in a typical agricultural watershed in eastern China.
    Pan Z; Hu M; Shen H; Wu H; Zhou J; Wu K; Chen D
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):19873-19889. PubMed ID: 36242662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of non-point sources pollution impacts by integrated 3S information technologies and GWLF modelling.
    Ning SK; Jeng KY; Chang NB
    Water Sci Technol; 2002; 46(6-7):217-24. PubMed ID: 12380994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forecasting riverine total nitrogen loads using wavelet analysis and support vector regression combination model in an agricultural watershed.
    Ji X; Lu J
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):26405-26422. PubMed ID: 29982944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.