BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38096827)

  • 1. Assembly-mediated activation of the SIR2-HerA supramolecular complex for anti-phage defense.
    Shen Z; Lin Q; Yang XY; Fosuah E; Fu TM
    Mol Cell; 2023 Dec; 83(24):4586-4599.e5. PubMed ID: 38096827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple enzymatic activities of a Sir2-HerA system cooperate for anti-phage defense.
    Tang D; Chen Y; Chen H; Jia T; Chen Q; Yu Y
    Mol Cell; 2023 Dec; 83(24):4600-4613.e6. PubMed ID: 38096825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and structural basis of an ATPase-nuclease dual-enzyme anti-phage defense complex.
    An Q; Wang Y; Tian Z; Han J; Li J; Liao F; Yu F; Zhao H; Wen Y; Zhang H; Deng Z
    Cell Res; 2024 Jun; ():. PubMed ID: 38834762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the modulation of bacterial NADase activity by phage proteins.
    Yin H; Li X; Wang X; Zhang C; Gao J; Yu G; He Q; Yang J; Liu X; Wei Y; Li Z; Zhang H
    Nat Commun; 2024 Mar; 15(1):2692. PubMed ID: 38538592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging.
    Iyer LM; Makarova KS; Koonin EV; Aravind L
    Nucleic Acids Res; 2004; 32(17):5260-79. PubMed ID: 15466593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for phage-mediated activation and repression of bacterial DSR2 anti-phage defense system.
    Zhang JT; Liu XY; Li Z; Wei XY; Song XY; Cui N; Zhong J; Li H; Jia N
    Nat Commun; 2024 Mar; 15(1):2797. PubMed ID: 38555355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryo-EM structure of the RADAR supramolecular anti-phage defense complex.
    Duncan-Lowey B; Tal N; Johnson AG; Rawson S; Mayer ML; Doron S; Millman A; Melamed S; Fedorenko T; Kacen A; Brandis A; Mehlman T; Amitai G; Sorek R; Kranzusch PJ
    Cell; 2023 Mar; 186(5):987-998.e15. PubMed ID: 36764290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple phage resistance systems inhibit infection via SIR2-dependent NAD
    Garb J; Lopatina A; Bernheim A; Zaremba M; Siksnys V; Melamed S; Leavitt A; Millman A; Amitai G; Sorek R
    Nat Microbiol; 2022 Nov; 7(11):1849-1856. PubMed ID: 36192536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis of bacterial DSR2 anti-phage defense and viral immune evasion.
    Huang J; Zhu K; Gao Y; Ye F; Li Z; Ge Y; Liu S; Yang J; Gao A
    Nat Commun; 2024 May; 15(1):3954. PubMed ID: 38729958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular architecture of the HerA-NurA DNA double-strand break resection complex.
    Byrne RT; Schuller JM; Unverdorben P; Förster F; Hopfner KP
    FEBS Lett; 2014 Dec; 588(24):4637-44. PubMed ID: 25447518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PtuA and PtuB assemble into an inflammasome-like oligomer for anti-phage defense.
    Li Y; Shen Z; Zhang M; Yang XY; Cleary SP; Xie J; Marathe IA; Kostelic M; Greenwald J; Rish AD; Wysocki VH; Chen C; Chen Q; Fu TM; Yu Y
    Nat Struct Mol Biol; 2024 Mar; 31(3):413-423. PubMed ID: 38177683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Landscape of New Nuclease-Containing Antiphage Systems in Escherichia coli and the Counterdefense Roles of Bacteriophage T4 Genome Modifications.
    Wang S; Sun E; Liu Y; Yin B; Zhang X; Li M; Huang Q; Tan C; Qian P; Rao VB; Tao P
    J Virol; 2023 Jun; 97(6):e0059923. PubMed ID: 37306585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and Functional Characterization of the NurA-HerA Complex from Deinococcus radiodurans.
    Cheng K; Chen X; Xu G; Wang L; Xu H; Yang S; Zhao Y; Hua Y
    J Bacteriol; 2015 Jun; 197(12):2048-61. PubMed ID: 25868646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.
    Zhao K; Harshaw R; Chai X; Marmorstein R
    Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8563-8. PubMed ID: 15150415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hera from Thermus thermophilus: the first thermostable DEAD-box helicase with an RNase P protein motif.
    Morlang S; Weglöhner W; Franceschi F
    J Mol Biol; 1999 Dec; 294(3):795-805. PubMed ID: 10610797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone deacetylation by Sir2 generates a transcriptionally repressed nucleoprotein complex.
    Parsons XH; Garcia SN; Pillus L; Kadonaga JT
    Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1609-14. PubMed ID: 12571358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and DNA end resection study of the bacterial NurA-HerA complex.
    Yang J; Sun Y; Wang Y; Hao W; Cheng K
    BMC Biol; 2023 Feb; 21(1):42. PubMed ID: 36829173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SIR2: the biochemical mechanism of NAD(+)-dependent protein deacetylation and ADP-ribosyl enzyme intermediates.
    Sauve AA; Schramm VL
    Curr Med Chem; 2004 Apr; 11(7):807-26. PubMed ID: 15078167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The putative RNase P motif in the DEAD box helicase Hera is dispensable for efficient interaction with RNA and helicase activity.
    Linden MH; Hartmann RK; Klostermeier D
    Nucleic Acids Res; 2008 Oct; 36(18):5800-11. PubMed ID: 18782831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry.
    Sauve AA; Schramm VL
    Biochemistry; 2003 Aug; 42(31):9249-56. PubMed ID: 12899610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.