These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38097071)

  • 1. Geospatial patterns in runoff projections using random forest based forecasting of time-series data for the mid-Atlantic region of the United States.
    Gaertner B
    Sci Total Environ; 2024 Feb; 912():169211. PubMed ID: 38097071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015.
    Abatzoglou JT; Dobrowski SZ; Parks SA; Hegewisch KC
    Sci Data; 2018 Jan; 5():170191. PubMed ID: 29313841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate, forest growing season, and evapotranspiration changes in the central Appalachian Mountains, USA.
    Gaertner BA; Zegre N; Warner T; Fernandez R; He Y; Merriam ER
    Sci Total Environ; 2019 Feb; 650(Pt 1):1371-1381. PubMed ID: 30308824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of future nationwide forest transition to discharge in the 21st century with regard to general circulation model climate change scenarios.
    Mouri G; Nakano K; Tsuyama I; Tanaka N
    Environ Res; 2016 Aug; 149():288-296. PubMed ID: 26852164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monthly-scale hydro-climatic forecasting and climate change impact evaluation based on a novel DCNN-Transformer network.
    Yang H; Zhang Z; Liu X; Jing P
    Environ Res; 2023 Nov; 236(Pt 2):116821. PubMed ID: 37541410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated modeling approach for estimating hydrologic responses to future urbanization and climate changes in a mixed-use midwestern watershed.
    Sunde MG; He HS; Hubbart JA; Urban MA
    J Environ Manage; 2018 Aug; 220():149-162. PubMed ID: 29777998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of monthly runoff simulations based on a physics-informed machine learning framework: The effect of intermediate variables in its construction.
    Deng C; Sun P; Yin X; Zou J; Wang W
    J Environ Manage; 2024 Jun; 362():121299. PubMed ID: 38830283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of climate and physiography on runoff response behavior through use of catchment classification and machine learning.
    Du S; Jiang S; Ren L; Yuan S; Yang X; Liu Y; Gong X; Xu CY
    Sci Total Environ; 2023 Nov; 899():166422. PubMed ID: 37604375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting hydrologic disturbance of streams using species occurrence data.
    Fox JT; Magoulick DD
    Sci Total Environ; 2019 Oct; 686():254-263. PubMed ID: 31181513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Runoff Trends and Drivers in the Haihe River Basin, China.
    Xu H; Ren Y; Zheng H; Ouyang Z; Jiang B
    Int J Environ Res Public Health; 2020 Feb; 17(5):. PubMed ID: 32121369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of watershed char and climate variables on annual runoff in different climatic zones in China.
    Huo J; Liu C; Yu X; Jia G; Chen L
    Sci Total Environ; 2021 Feb; 754():142157. PubMed ID: 32920406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition.
    Wang WC; Chau KW; Qiu L; Chen YB
    Environ Res; 2015 May; 139():46-54. PubMed ID: 25684671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mid-long term forecasting of reservoir inflow using the coupling of time-varying filter-based empirical mode decomposition and gated recurrent unit.
    Wang X; Zhang S; Qiao H; Liu L; Tian F
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):87200-87217. PubMed ID: 35804225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Living with uncertainty: climate change, river flows and water resource management in Scotland.
    Werritty A
    Sci Total Environ; 2002 Jul; 294(1-3):29-40. PubMed ID: 12169009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climatic variation and runoff from partially-glacierised Himalayan tributary basins of the Ganges.
    Collins DN; Davenport JL; Stoffel M
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S48-59. PubMed ID: 24296050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Historical changes in plant water use and need in the continental United States.
    Tercek MT; Thoma D; Gross JE; Sherrill K; Kagone S; Senay G
    PLoS One; 2021; 16(9):e0256586. PubMed ID: 34473760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into runoff characteristics using hydrological modeling in the data-scarce southern Tibetan Plateau: Past, present, and future.
    Cai M; Yang S; Zhao C; Zhou Q; Hou L
    PLoS One; 2017; 12(5):e0176813. PubMed ID: 28486483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mid- and long-term runoff predictions by an improved phase-space reconstruction model.
    Hong M; Wang D; Wang Y; Zeng X; Ge S; Yan H; Singh VP
    Environ Res; 2016 Jul; 148():560-573. PubMed ID: 26632992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forecasting Dengue Hotspots Associated With Variation in Meteorological Parameters Using Regression and Time Series Models.
    Patil S; Pandya S
    Front Public Health; 2021; 9():798034. PubMed ID: 34900929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attribution of Runoff Variation in the Headwaters of the Yangtze River Based on the Budyko Hypothesis.
    Liu J; Chen J; Xu J; Lin Y; Yuan Z; Zhou M
    Int J Environ Res Public Health; 2019 Jul; 16(14):. PubMed ID: 31337052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.