These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38097572)

  • 1. Tracking exceptional points above the lasing threshold.
    Ji K; Zhong Q; Ge L; Beaudoin G; Sagnes I; Raineri F; El-Ganainy R; Yacomotti AM
    Nat Commun; 2023 Dec; 14(1):8304. PubMed ID: 38097572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic gain and frequency comb formation in exceptional-point lasers.
    Gao X; He H; Sobolewski S; Cerjan A; Hsu CW
    Nat Commun; 2024 Oct; 15(1):8618. PubMed ID: 39366982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pump-induced exceptional points in lasers.
    Liertzer M; Ge L; Cerjan A; Stone AD; Türeci HE; Rotter S
    Phys Rev Lett; 2012 Apr; 108(17):173901. PubMed ID: 22680867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct observation of exceptional points in coupled photonic-crystal lasers with asymmetric optical gains.
    Kim KH; Hwang MS; Kim HR; Choi JH; No YS; Park HG
    Nat Commun; 2016 Dec; 7():13893. PubMed ID: 28000688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral modes and directional lasing at exceptional points.
    Peng B; Özdemir ŞK; Liertzer M; Chen W; Kramer J; Yılmaz H; Wiersig J; Rotter S; Yang L
    Proc Natl Acad Sci U S A; 2016 Jun; 113(25):6845-50. PubMed ID: 27274059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lasing threshold of thresholdless and non-thresholdless metal-semiconductor nanolasers.
    Vyshnevyy AA; Fedyanin DY
    Opt Express; 2018 Dec; 26(25):33473-33483. PubMed ID: 30645499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thresholdless quantum dot nanolaser.
    Ota Y; Kakuda M; Watanabe K; Iwamoto S; Arakawa Y
    Opt Express; 2017 Aug; 25(17):19981-19994. PubMed ID: 29041684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous spontaneous emission dynamics at chiral exceptional points.
    Lu Y; Zhao Y; Li R; Liu J
    Opt Express; 2022 Nov; 30(23):41784-41803. PubMed ID: 36366646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss-induced suppression and revival of lasing.
    Peng B; Özdemir SK; Rotter S; Yilmaz H; Liertzer M; Monifi F; Bender CM; Nori F; Yang L
    Science; 2014 Oct; 346(6207):328-32. PubMed ID: 25324384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. White light cavity formation and superluminal lasing near exceptional points.
    Scheuer J
    Opt Express; 2018 Nov; 26(24):32091-32102. PubMed ID: 30650675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restoring Adiabatic State Transfer in Time-Modulated Non-Hermitian Systems.
    Arkhipov II; Minganti F; Miranowicz A; Özdemir ŞK; Nori F
    Phys Rev Lett; 2024 Sep; 133(11):113802. PubMed ID: 39331981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hamiltonian Hopping for Efficient Chiral Mode Switching in Encircling Exceptional Points.
    Li A; Dong J; Wang J; Cheng Z; Ho JS; Zhang D; Wen J; Zhang XL; Chan CT; Alù A; Qiu CW; Chen L
    Phys Rev Lett; 2020 Oct; 125(18):187403. PubMed ID: 33196255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A room temperature continuous-wave nanolaser using colloidal quantum wells.
    Yang Z; Pelton M; Fedin I; Talapin DV; Waks E
    Nat Commun; 2017 Jul; 8(1):143. PubMed ID: 28747633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approaches to tuning the exceptional point of PT-symmetric double ridge stripe lasers.
    Fu T; Wang Y; Zhou X; Du F; Fan J; Wang X; Chen J; Qi A; Zheng W
    Opt Express; 2021 Jun; 29(13):20440-20448. PubMed ID: 34266133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous Single-Mode Lasing Induced by Nonlinearity and the Non-Hermitian Skin Effect.
    Zhu B; Wang Q; Leykam D; Xue H; Wang QJ; Chong YD
    Phys Rev Lett; 2022 Jul; 129(1):013903. PubMed ID: 35841551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creating Anti-Chiral Exceptional Points in Non-Hermitian Metasurfaces for Efficient Terahertz Switching.
    Yu Z; He W; Hu S; Ren Z; Wan S; Cheng X; Hu Y; Jiang T
    Adv Sci (Weinh); 2024 Jul; 11(28):e2402615. PubMed ID: 38757557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-pulsing and dual-mode lasing in a square microcavity semiconductor laser.
    Li JC; Huang YT; Ma CG; Zhang ZN; Xiao JL; Yang YD; Huang YZ
    Opt Lett; 2023 Oct; 48(19):4953-4956. PubMed ID: 37773358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum.
    Chou YH; Wu YM; Hong KB; Chou BT; Shih JH; Chung YC; Chen PY; Lin TR; Lin CC; Lin SD; Lu TC
    Nano Lett; 2016 May; 16(5):3179-86. PubMed ID: 27089144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Quality Hexagonal Nonlayered CdS Nanoplatelets for Low-Threshold Whispering-Gallery-Mode Lasing.
    Mi Y; Jin B; Zhao L; Chen J; Zhang S; Shi J; Zhong Y; Du W; Zhang J; Zhang Q; Zhai T; Liu X
    Small; 2019 Aug; 15(35):e1901364. PubMed ID: 31282127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient Loss-Induced Non-Hermitian Degeneracies for Ultrafast Terahertz Metadevices.
    He W; Hu Y; Ren Z; Hu S; Yu Z; Wan S; Cheng X; Jiang T
    Adv Sci (Weinh); 2023 Dec; 10(36):e2304972. PubMed ID: 37897321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.