These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 38097911)
1. Tailoring tumor-recognizable hyaluronic acid-lipid conjugates to enhance anticancer efficacies of surface-engineered natural killer cells. Lee CE; Kim S; Park HW; Lee W; Jangid AK; Choi Y; Jeong WJ; Kim K Nano Converg; 2023 Dec; 10(1):56. PubMed ID: 38097911 [TBL] [Abstract][Full Text] [Related]
2. Optimized Design of Hyaluronic Acid-Lipid Conjugate Biomaterial for Augmenting CD44 Recognition of Surface-Engineered NK Cells. Park HW; Lee W; Kim S; Jangid AK; Park J; Lee CE; Kim K Biomacromolecules; 2024 Mar; 25(3):1959-1971. PubMed ID: 38379131 [TBL] [Abstract][Full Text] [Related]
3. Biomaterial-Mediated Exogenous Facile Coating of Natural Killer Cells for Enhancing Anticancer Efficacy toward Hepatocellular Carcinoma. Jangid AK; Kim S; Kim HJ; Kim K Bioconjug Chem; 2023 Oct; 34(10):1789-1801. PubMed ID: 37726892 [TBL] [Abstract][Full Text] [Related]
4. Surface Engineering of Natural Killer Cells with CD44-targeting Ligands for Augmented Cancer Immunotherapy. Kim S; Li S; Jangid AK; Park HW; Lee DJ; Jung HS; Kim K Small; 2024 Jun; 20(24):e2306738. PubMed ID: 38161257 [TBL] [Abstract][Full Text] [Related]
5. Ex Vivo Surface Decoration of Phenylboronic Acid onto Natural Killer Cells for Sialic Acid-Mediated Versatile Cancer Cell Targeting. Jangid AK; Kim S; Park HW; Kim HJ; Kim K Biomacromolecules; 2024 Jan; 25(1):222-237. PubMed ID: 38130077 [TBL] [Abstract][Full Text] [Related]
6. Networked Cluster Formation via Trigonal Lipid Modules for Augmented Ex Vivo NK Cell Priming. Park J; Kim S; Jangid AK; Park HW; Kim K Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338836 [TBL] [Abstract][Full Text] [Related]
7. Lipid-mediated ex vivo cell surface engineering for augmented cellular functionalities. Kim S; Kim K Biomater Adv; 2022 Sep; 140():213059. PubMed ID: 35961186 [TBL] [Abstract][Full Text] [Related]
8. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Hadinoto K; Sundaresan A; Cheow WS Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):427-43. PubMed ID: 23872180 [TBL] [Abstract][Full Text] [Related]
9. Intermembrane transfer of polyethylene glycol-modified phosphatidylethanolamine as a means to reveal surface-associated binding ligands on liposomes. Li WM; Xue L; Mayer LD; Bally MB Biochim Biophys Acta; 2001 Aug; 1513(2):193-206. PubMed ID: 11470091 [TBL] [Abstract][Full Text] [Related]
10. Transformative hyaluronic acid-based active targeting supramolecular nanoplatform improves long circulation and enhances cellular uptake in cancer therapy. Zhong L; Xu L; Liu Y; Li Q; Zhao D; Li Z; Zhang H; Zhang H; Kan Q; Wang Y; Sun J; He Z Acta Pharm Sin B; 2019 Mar; 9(2):397-409. PubMed ID: 30972285 [TBL] [Abstract][Full Text] [Related]
11. Hyaluronan polymer length, grafting density, and surface poly(ethylene glycol) coating influence in vivo circulation and tumor targeting of hyaluronan-grafted liposomes. Qhattal HS; Hye T; Alali A; Liu X ACS Nano; 2014 Jun; 8(6):5423-40. PubMed ID: 24806526 [TBL] [Abstract][Full Text] [Related]
12. Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration. Jeong JY; Hong EH; Lee SY; Lee JY; Song JH; Ko SH; Shim JS; Choe S; Kim DD; Ko HJ; Cho HJ Acta Biomater; 2017 Apr; 53():414-426. PubMed ID: 28216300 [TBL] [Abstract][Full Text] [Related]
13. Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid. Yin S; Huai J; Chen X; Yang Y; Zhang X; Gan Y; Wang G; Gu X; Li J Acta Biomater; 2015 Oct; 26():274-85. PubMed ID: 26300335 [TBL] [Abstract][Full Text] [Related]
14. Stealth CD44-targeted hyaluronic acid supramolecular nanoassemblies for doxorubicin delivery: probing the effect of uncovalent pegylation degree on cellular uptake and blood long circulation. Han X; Li Z; Sun J; Luo C; Li L; Liu Y; Du Y; Qiu S; Ai X; Wu C; Lian H; He Z J Control Release; 2015 Jan; 197():29-40. PubMed ID: 25449802 [TBL] [Abstract][Full Text] [Related]
15. A Novel Therapeutic siRNA Nanoparticle Designed for Dual-Targeting CD44 and Gli1 of Gastric Cancer Stem Cells. Yao H; Sun L; Li J; Zhou X; Li R; Shao R; Zhang Y; Li L Int J Nanomedicine; 2020; 15():7013-7034. PubMed ID: 33061365 [TBL] [Abstract][Full Text] [Related]
16. Development and mechanistic insight into enhanced cytotoxic potential of hyaluronic acid conjugated nanoparticles in CD44 overexpressing cancer cells. Saneja A; Nayak D; Srinivas M; Kumar A; Khare V; Katoch A; Goswami A; Vishwakarma RA; Sawant SD; Gupta PN Eur J Pharm Sci; 2017 Jan; 97():79-91. PubMed ID: 27989859 [TBL] [Abstract][Full Text] [Related]
17. Hyaluronic acid-based nanogel-drug conjugates with enhanced anticancer activity designed for the targeting of CD44-positive and drug-resistant tumors. Wei X; Senanayake TH; Warren G; Vinogradov SV Bioconjug Chem; 2013 Apr; 24(4):658-68. PubMed ID: 23547842 [TBL] [Abstract][Full Text] [Related]
18. Effects of the Molecular Weight of Hyaluronic Acid in a Carbon Nanotube Drug Delivery Conjugate. Arpicco S; Bartkowski M; Barge A; Zonari D; Serpe L; Milla P; Dosio F; Stella B; Giordani S Front Chem; 2020; 8():578008. PubMed ID: 33381490 [TBL] [Abstract][Full Text] [Related]
19. Factors influencing the retention and chemical stability of poly(ethylene glycol)-lipid conjugates incorporated into large unilamellar vesicles. Parr MJ; Ansell SM; Choi LS; Cullis PR Biochim Biophys Acta; 1994 Oct; 1195(1):21-30. PubMed ID: 7918562 [TBL] [Abstract][Full Text] [Related]
20. Hyaluronic acid/polyethylene glycol nanoparticles for controlled delivery of mitoxantrone. Sargazi A; Kamali N; Shiri F; Heidari Majd M Artif Cells Nanomed Biotechnol; 2018 May; 46(3):500-509. PubMed ID: 28503952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]