These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38098298)

  • 21. Breadth by depth: expanding our understanding of the repair of transposon-induced DNA double strand breaks via deep-sequencing.
    Huefner ND; Mizuno Y; Weil CF; Korf I; Britt AB
    DNA Repair (Amst); 2011 Oct; 10(10):1023-33. PubMed ID: 21889425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of sequence contexts that favor alternative end joining at Cas9-induced double-strand breaks.
    Hanscom T; Woodward N; Batorsky R; Brown AJ; Roberts SA; McVey M
    Nucleic Acids Res; 2022 Jul; 50(13):7465-7478. PubMed ID: 35819195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contribution of Microhomology to Genome Instability: Connection between DNA Repair and Replication Stress.
    Jiang Y
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Linearization and transposition of circular molecules of insertion sequence IS3.
    Sekine Y; Aihara K; Ohtsubo E
    J Mol Biol; 1999 Nov; 294(1):21-34. PubMed ID: 10556026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polλ promotes microhomology-mediated end-joining.
    Chandramouly G; Jamsen J; Borisonnik N; Tyagi M; Calbert ML; Tredinnick T; Ozdemir AY; Kent T; Demidova EV; Arora S; Wilson SH; Pomerantz RT
    Nat Struct Mol Biol; 2023 Jan; 30(1):107-114. PubMed ID: 36536104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonhomologous-end-joining factors regulate DNA repair fidelity during Sleeping Beauty element transposition in mammalian cells.
    Yant SR; Kay MA
    Mol Cell Biol; 2003 Dec; 23(23):8505-18. PubMed ID: 14612396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly precise and developmentally programmed genome assembly in Paramecium requires ligase IV-dependent end joining.
    Kapusta A; Matsuda A; Marmignon A; Ku M; Silve A; Meyer E; Forney JD; Malinsky S; Bétermier M
    PLoS Genet; 2011 Apr; 7(4):e1002049. PubMed ID: 21533177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant organellar DNA polymerases repair double-stranded breaks by microhomology-mediated end-joining.
    García-Medel PL; Baruch-Torres N; Peralta-Castro A; Trasviña-Arenas CH; Torres-Larios A; Brieba LG
    Nucleic Acids Res; 2019 Apr; 47(6):3028-3044. PubMed ID: 30698803
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient ligase 3-dependent microhomology-mediated end joining repair of DNA double-strand breaks in zebrafish embryos.
    He MD; Zhang FH; Wang HL; Wang HP; Zhu ZY; Sun YH
    Mutat Res; 2015 Oct; 780():86-96. PubMed ID: 26318124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Mre11/Rad50/Nbs1 complex functions in resection-based DNA end joining in Xenopus laevis.
    Taylor EM; Cecillon SM; Bonis A; Chapman JR; Povirk LF; Lindsay HD
    Nucleic Acids Res; 2010 Jan; 38(2):441-54. PubMed ID: 19892829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Excision of IS492 requires flanking target sequences and results in circle formation in Pseudoalteromonas atlantica.
    Perkins-Balding D; Duval-Valentin G; Glasgow AC
    J Bacteriol; 1999 Aug; 181(16):4937-48. PubMed ID: 10438765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings.
    McVey M; Lee SE
    Trends Genet; 2008 Nov; 24(11):529-38. PubMed ID: 18809224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transposition of hAT elements links transposable elements and V(D)J recombination.
    Zhou L; Mitra R; Atkinson PW; Hickman AB; Dyda F; Craig NL
    Nature; 2004 Dec; 432(7020):995-1001. PubMed ID: 15616554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Requirement of POL3 and POL4 on non-homologous and microhomology-mediated end joining in rad50/xrs2 mutants of Saccharomyces cerevisiae.
    Galli A; Chan CY; Parfenova L; Cervelli T; Schiestl RH
    Mutagenesis; 2015 Nov; 30(6):841-9. PubMed ID: 26122113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transposition and targeting of the prokaryotic mobile element IS30 in zebrafish.
    Szabó M; Müller F; Kiss J; Balduf C; Strähle U; Olasz F
    FEBS Lett; 2003 Aug; 550(1-3):46-50. PubMed ID: 12935884
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Secondary structure forming sequences drive SD-MMEJ repair of DNA double-strand breaks.
    Khodaverdian VY; Hanscom T; Yu AM; Yu TL; Mak V; Brown AJ; Roberts SA; McVey M
    Nucleic Acids Res; 2017 Dec; 45(22):12848-12861. PubMed ID: 29121353
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Mre11/Rad50/Xrs2 complex and non-homologous end-joining of incompatible ends in S. cerevisiae.
    Zhang X; Paull TT
    DNA Repair (Amst); 2005 Nov; 4(11):1281-94. PubMed ID: 16043424
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Architecture of the Tn7 posttransposition complex: an elaborate nucleoprotein structure.
    Holder JW; Craig NL
    J Mol Biol; 2010 Aug; 401(2):167-81. PubMed ID: 20538004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The terminal inverted repeats of IS911: requirements for synaptic complex assembly and activity.
    Normand C; Duval-Valentin G; Haren L; Chandler M
    J Mol Biol; 2001 May; 308(5):853-71. PubMed ID: 11352577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.