These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 38098472)
1. Machine learning-based integrated identification of predictive combined diagnostic biomarkers for endometriosis. Zhang H; Zhang H; Yang H; Shuid AN; Sandai D; Chen X Front Genet; 2023; 14():1290036. PubMed ID: 38098472 [No Abstract] [Full Text] [Related]
2. Construction of predictive model of interstitial fibrosis and tubular atrophy after kidney transplantation with machine learning algorithms. Yin Y; Chen C; Zhang D; Han Q; Wang Z; Huang Z; Chen H; Sun L; Fei S; Tao J; Han Z; Tan R; Gu M; Ju X Front Genet; 2023; 14():1276963. PubMed ID: 38028591 [No Abstract] [Full Text] [Related]
3. Identification of immune- and autophagy-related genes and effective diagnostic biomarkers in endometriosis: a bioinformatics analysis. Ji X; Huang C; Mao H; Zhang Z; Zhang X; Yue B; Li X; Wu Q Ann Transl Med; 2022 Dec; 10(24):1397. PubMed ID: 36660690 [TBL] [Abstract][Full Text] [Related]
4. Unraveling pathogenesis, biomarkers and potential therapeutic agents for endometriosis associated with disulfidptosis based on bioinformatics analysis, machine learning and experiment validation. Zhao X; Zhao Y; Zhang Y; Fan Q; Ke H; Chen X; Jin L; Tang H; Jiang Y; Ma J J Biol Eng; 2024 Jul; 18(1):42. PubMed ID: 39061076 [TBL] [Abstract][Full Text] [Related]
5. Bioinformatics identification and validation of biomarkers and infiltrating immune cells in endometriosis. Jiang H; Zhang X; Wu Y; Zhang B; Wei J; Li J; Huang Y; Chen L; He X Front Immunol; 2022; 13():944683. PubMed ID: 36524127 [TBL] [Abstract][Full Text] [Related]
6. Construction and evaluation of endometriosis diagnostic prediction model and immune infiltration based on efferocytosis-related genes. Pei FL; Jia JJ; Lin SH; Chen XX; Wu LZ; Lin ZX; Sun BW; Zeng C Front Mol Biosci; 2023; 10():1298457. PubMed ID: 38370978 [No Abstract] [Full Text] [Related]
7. ASPN Is a Potential Biomarker and Associated with Immune Infiltration in Endometriosis. Wang L; Sun J Genes (Basel); 2022 Jul; 13(8):. PubMed ID: 36011263 [TBL] [Abstract][Full Text] [Related]
8. Screening of genes co-associated with osteoporosis and chronic HBV infection based on bioinformatics analysis and machine learning. Yang J; Yang W; Hu Y; Tong L; Liu R; Liu L; Jiang B; Sun Z Front Immunol; 2024; 15():1472354. PubMed ID: 39351238 [TBL] [Abstract][Full Text] [Related]
9. Revealing the diagnostic value and immune infiltration of senescence-related genes in endometriosis: a combined single-cell and machine learning analysis. Zou L; Meng L; Xu Y; Wang K; Zhang J Front Pharmacol; 2023; 14():1259467. PubMed ID: 37860112 [No Abstract] [Full Text] [Related]
10. Bioinformatical analysis identifies PDLIM3 as a potential biomarker associated with immune infiltration in patients with endometriosis. Gan L; Sun J; Sun J PeerJ; 2022; 10():e13218. PubMed ID: 35378934 [TBL] [Abstract][Full Text] [Related]
11. Identification of immune infiltration and cuproptosis-related molecular clusters in tuberculosis. Li S; Long Q; Nong L; Zheng Y; Meng X; Zhu Q Front Immunol; 2023; 14():1205741. PubMed ID: 37497230 [TBL] [Abstract][Full Text] [Related]
12. Cuproptosis-related gene identification and immune infiltration analysis in systemic lupus erythematosus. Li W; Guan X; Wang Y; Lv Y; Wu Y; Yu M; Sun Y Front Immunol; 2023; 14():1157196. PubMed ID: 37313407 [TBL] [Abstract][Full Text] [Related]
13. Identification and validation of an endoplasmic-reticulum-stress-related gene signature as an effective diagnostic marker of endometriosis. Wang T; Ji M; Sun J PeerJ; 2024; 12():e17070. PubMed ID: 38549776 [TBL] [Abstract][Full Text] [Related]
14. Exploration and verification a 13-gene diagnostic framework for ulcerative colitis across multiple platforms via machine learning algorithms. Wang J; Li L; Chen P; He C; Niu X Sci Rep; 2024 Jul; 14(1):15009. PubMed ID: 38951638 [TBL] [Abstract][Full Text] [Related]
15. Identifying potential biomarkers for non-obstructive azoospermia using WGCNA and machine learning algorithms. Tang Q; Su Q; Wei L; Wang K; Jiang T Front Endocrinol (Lausanne); 2023; 14():1108616. PubMed ID: 37854191 [TBL] [Abstract][Full Text] [Related]
16. A machine learning-based diagnostic model for myocardial infarction patients: Analysis of neutrophil extracellular traps-related genes and eQTL Mendelian randomization. Sheng M; Cui X Medicine (Baltimore); 2024 Mar; 103(12):e37363. PubMed ID: 38518057 [TBL] [Abstract][Full Text] [Related]
17. Machine learning and bioinformatics analysis to identify autophagy-related biomarkers in peripheral blood for rheumatoid arthritis. Dong G; Gao H; Chen Y; Yang H Front Genet; 2023; 14():1238407. PubMed ID: 37779906 [No Abstract] [Full Text] [Related]
18. Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study. Abbaspour S; Barahman M; Abdollahi H; Arabalibeik H; Hajainfar G; Babaei M; Iraji H; Barzegartahamtan M; Ay MR; Mahdavi SR Biomed Phys Eng Express; 2023 Dec; 10(1):. PubMed ID: 37995359 [No Abstract] [Full Text] [Related]
19. Lasso algorithm and support vector machine strategy to screen pulmonary arterial hypertension gene diagnostic markers. Jiang C; Jiang W Scott Med J; 2023 Feb; 68(1):21-31. PubMed ID: 36253715 [TBL] [Abstract][Full Text] [Related]
20. Identifying potential biomarkers of idiopathic pulmonary fibrosis through machine learning analysis. Wu Z; Chen H; Ke S; Mo L; Qiu M; Zhu G; Zhu W; Liu L Sci Rep; 2023 Oct; 13(1):16559. PubMed ID: 37783761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]