These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 38098850)
1. Comparison of MRI radiomics-based machine learning survival models in predicting prognosis of glioblastoma multiforme. Zhang D; Luan J; Liu B; Yang A; Lv K; Hu P; Han X; Yu H; Shmuel A; Ma G; Zhang C Front Med (Lausanne); 2023; 10():1271687. PubMed ID: 38098850 [TBL] [Abstract][Full Text] [Related]
2. Development and validation of machine learning models for predicting prognosis and guiding individualized postoperative chemotherapy: A real-world study of distal cholangiocarcinoma. Wang D; Pan B; Huang JC; Chen Q; Cui SP; Lang R; Lyu SC Front Oncol; 2023; 13():1106029. PubMed ID: 37007095 [TBL] [Abstract][Full Text] [Related]
3. Deep learning model for predicting the survival of patients with primary gastrointestinal lymphoma based on the SEER database and a multicentre external validation cohort. Wang F; Chen L; Liu L; Jia Y; Li W; Wang L; Zhi J; Liu W; Li W; Li Z J Cancer Res Clin Oncol; 2023 Oct; 149(13):12177-12189. PubMed ID: 37428248 [TBL] [Abstract][Full Text] [Related]
4. Development and Validation of a MRI-Based Radiomics Prognostic Classifier in Patients with Primary Glioblastoma Multiforme. Chen X; Fang M; Dong D; Liu L; Xu X; Wei X; Jiang X; Qin L; Liu Z Acad Radiol; 2019 Oct; 26(10):1292-1300. PubMed ID: 30660472 [TBL] [Abstract][Full Text] [Related]
5. A radiomics nomogram based on multiparametric MRI might stratify glioblastoma patients according to survival. Zhang X; Lu H; Tian Q; Feng N; Yin L; Xu X; Du P; Liu Y Eur Radiol; 2019 Oct; 29(10):5528-5538. PubMed ID: 30847586 [TBL] [Abstract][Full Text] [Related]
6. Deep learning models for predicting the survival of patients with chondrosarcoma based on a surveillance, epidemiology, and end results analysis. Yan L; Gao N; Ai F; Zhao Y; Kang Y; Chen J; Weng Y Front Oncol; 2022; 12():967758. PubMed ID: 36072795 [TBL] [Abstract][Full Text] [Related]
7. A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme. Lao J; Chen Y; Li ZC; Li Q; Zhang J; Liu J; Zhai G Sci Rep; 2017 Sep; 7(1):10353. PubMed ID: 28871110 [TBL] [Abstract][Full Text] [Related]
8. Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study. Yang X; Qiu H; Wang L; Wang X J Med Internet Res; 2023 Oct; 25():e44417. PubMed ID: 37883174 [TBL] [Abstract][Full Text] [Related]
9. Multiple Survival Outcome Prediction of Glioblastoma Patients Based on Multiparametric MRI. Wang B; Zhang S; Wu X; Li Y; Yan Y; Liu L; Xiang J; Li D; Yan T Front Oncol; 2021; 11():778627. PubMed ID: 34900728 [TBL] [Abstract][Full Text] [Related]
10. The role of deep learning-based survival model in improving survival prediction of patients with glioblastoma. Moradmand H; Aghamiri SMR; Ghaderi R; Emami H Cancer Med; 2021 Oct; 10(20):7048-7059. PubMed ID: 34453413 [TBL] [Abstract][Full Text] [Related]
11. Development and validation of survival prediction model for gastric adenocarcinoma patients using deep learning: A SEER-based study. Zeng J; Li K; Cao F; Zheng Y Front Oncol; 2023; 13():1131859. PubMed ID: 36959782 [TBL] [Abstract][Full Text] [Related]
12. Comparison of time-to-event machine learning models in predicting oral cavity cancer prognosis. Adeoye J; Hui L; Koohi-Moghadam M; Tan JY; Choi SW; Thomson P Int J Med Inform; 2022 Jan; 157():104635. PubMed ID: 34800847 [TBL] [Abstract][Full Text] [Related]
13. Prognosis prediction for glioblastoma multiforme patients using machine learning approaches: Development of the clinically applicable model. Kim Y; Kim KH; Park J; Yoon HI; Sung W Radiother Oncol; 2023 Jun; 183():109617. PubMed ID: 36921767 [TBL] [Abstract][Full Text] [Related]
14. Machine learning methods for accurately predicting survival and guiding treatment in stage I and II hepatocellular carcinoma. Li X; Bao H; Shi Y; Zhu W; Peng Z; Yan L; Chen J; Shu X Medicine (Baltimore); 2023 Nov; 102(45):e35892. PubMed ID: 37960763 [TBL] [Abstract][Full Text] [Related]
15. A Multi-parametric MRI-Based Radiomics Signature and a Practical ML Model for Stratifying Glioblastoma Patients Based on Survival Toward Precision Oncology. Osman AFI Front Comput Neurosci; 2019; 13():58. PubMed ID: 31507398 [No Abstract] [Full Text] [Related]
16. Comparison of deep learning-based recurrence-free survival with random survival forest and Cox proportional hazard models in Stage-I NSCLC patients. Kar İ; Kocaman G; İbrahimov F; Enön S; Coşgun E; Elhan AH Cancer Med; 2023 Sep; 12(18):19272-19278. PubMed ID: 37644818 [TBL] [Abstract][Full Text] [Related]
17. Comparison of Radiomics-Based Machine-Learning Classifiers in Diagnosis of Glioblastoma From Primary Central Nervous System Lymphoma. Chen C; Zheng A; Ou X; Wang J; Ma X Front Oncol; 2020; 10():1151. PubMed ID: 33042784 [No Abstract] [Full Text] [Related]
18. Predicting overall survival in chordoma patients using machine learning models: a web-app application. Cheng P; Xie X; Knoedler S; Mi B; Liu G J Orthop Surg Res; 2023 Sep; 18(1):652. PubMed ID: 37660044 [TBL] [Abstract][Full Text] [Related]
19. A Comparative and Summative Study of Radiomics-based Overall Survival Prediction in Glioblastoma Patients. Ruan Z; Mei N; Lu Y; Xiong J; Li X; Zheng W; Liu L; Yin B J Comput Assist Tomogr; 2022 May-Jun 01; 46(3):470-479. PubMed ID: 35405713 [TBL] [Abstract][Full Text] [Related]
20. Predicting the survival of patients with pancreatic neuroendocrine neoplasms using deep learning: A study based on Surveillance, Epidemiology, and End Results database. Jiang C; Wang K; Yan L; Yao H; Shi H; Lin R Cancer Med; 2023 Jun; 12(11):12413-12424. PubMed ID: 37165971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]