These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 38098970)
1. Co-production of pigment and high value-added bacterial nanocellulose from Tan R; Sun Q; Yan Y; Chen T; Wang Y; Li J; Guo X; Fan Z; Zhang Y; Chen L; Wu G; Wu N Front Bioeng Biotechnol; 2023; 11():1307674. PubMed ID: 38098970 [TBL] [Abstract][Full Text] [Related]
2. Advances in the Production of Sustainable Bacterial Nanocellulose from Banana Leaves. Dáger-López D; Chenché Ó; Ricaurte-Párraga R; Núñez-Rodríguez P; Bajaña JM; Fiallos-Cárdenas M Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38675076 [TBL] [Abstract][Full Text] [Related]
3. Optimization of bacterial nanocellulose fermentation using recycled paper sludge and development of novel composites. Soares da Silva FAG; Fernandes M; Souto AP; Ferreira EC; Dourado F; Gama M Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):9143-9154. PubMed ID: 31650194 [TBL] [Abstract][Full Text] [Related]
4. Exploration of a novel and efficient source for production of bacterial nanocellulose, bioprocess optimization and characterization. El-Naggar NE; El-Malkey SE; Abu-Saied MA; Mohammed ABA Sci Rep; 2022 Nov; 12(1):18533. PubMed ID: 36323728 [TBL] [Abstract][Full Text] [Related]
5. Production and characterization of Komagataeibacter xylinus SGP8 nanocellulose and its calcite based composite for removal of Cd ions. Bhattacharya A; Sadaf A; Dubey S; Singh RP; Khare SK Environ Sci Pollut Res Int; 2021 Sep; 28(34):46423-46430. PubMed ID: 32335838 [TBL] [Abstract][Full Text] [Related]
6. Comparison of tolerance of four bacterial nanocellulose-producing strains to lignocellulose-derived inhibitors. Zou X; Wu G; Stagge S; Chen L; Jönsson LJ; Hong FF Microb Cell Fact; 2017 Dec; 16(1):229. PubMed ID: 29268745 [TBL] [Abstract][Full Text] [Related]
7. Effect of addition of γ-poly glutamic acid on bacterial nanocellulose production under agitated culture conditions. Bai Y; Tan R; Yan Y; Chen T; Feng Y; Sun Q; Li J; Wang Y; Liu F; Wang J; Zhang Y; Cheng X; Wu G Biotechnol Biofuels Bioprod; 2024 May; 17(1):68. PubMed ID: 38802837 [TBL] [Abstract][Full Text] [Related]
8. A turning point in the bacterial nanocellulose production employing low doses of gamma radiation. Al-Hagar OEA; Abol-Fotouh D Sci Rep; 2022 Apr; 12(1):7012. PubMed ID: 35488046 [TBL] [Abstract][Full Text] [Related]
9. Use of brewer's residual yeast for production of bacterial nanocellulose with Gluconacetobacter hansenii. de Paiva GM; de Melo LF; Pedroso FP; Mesquita PDL; Nucci ER; Santos IJB Int J Biol Macromol; 2023 Jul; 242(Pt 3):124897. PubMed ID: 37196713 [TBL] [Abstract][Full Text] [Related]
10. Bacterial nanocellulose by static, static intermittent fed-batch and rotary disc bioreactor-based fermentation routes using economical black tea broth medium: A comparative account. Sharma C; Bhardwaj NK; Pathak P; Dey P; Gautam S; Kumar S; Dutt Purohit S Int J Biol Macromol; 2024 Oct; 277(Pt 2):134228. PubMed ID: 39074706 [TBL] [Abstract][Full Text] [Related]
11. Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Abol-Fotouh D; Hassan MA; Shokry H; Roig A; Azab MS; Kashyout AEB Sci Rep; 2020 Feb; 10(1):3491. PubMed ID: 32103077 [TBL] [Abstract][Full Text] [Related]
12. Addition of Various Cellulosic Components to Bacterial Nanocellulose: A Comparison of Surface Qualities and Crystalline Properties. Bang WY; Kim DH; Kang MD; Yang J; Huh T; Lim YW; Jung YH J Microbiol Biotechnol; 2021 Oct; 31(10):1366-1372. PubMed ID: 34319261 [TBL] [Abstract][Full Text] [Related]
13. Effect of the ex situ physical and in situ chemical modification of bacterial nanocellulose on mechanical properties in the context of its potential applications in heart valve design. Stanisławska A; Szkodo M; Staroszczyk H; Dawidowska K; Kołaczkowska M; Siondalski P Int J Biol Macromol; 2024 Jun; 269(Pt 1):131951. PubMed ID: 38710253 [TBL] [Abstract][Full Text] [Related]
14. Enzymatic hydrolysis and characterization of waste lignocellulosic biomass produced after dye bioremediation under solid state fermentation. Waghmare PR; Kadam AA; Saratale GD; Govindwar SP Bioresour Technol; 2014 Sep; 168():136-41. PubMed ID: 24656486 [TBL] [Abstract][Full Text] [Related]
15. Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid-base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Chandel AK; Antunes FA; Anjos V; Bell MJ; Rodrigues LN; Polikarpov I; de Azevedo ER; Bernardinelli OD; Rosa CA; Pagnocca FC; da Silva SS Biotechnol Biofuels; 2014; 7():63. PubMed ID: 24739736 [TBL] [Abstract][Full Text] [Related]
17. Bioconversion of Waste Fiber Sludge to Bacterial Nanocellulose and Use for Reinforcement of CTMP Paper Sheets. Chen G; Wu G; Alriksson B; Wang W; Hong FF; Jönsson LJ Polymers (Basel); 2017 Sep; 9(9):. PubMed ID: 30965761 [TBL] [Abstract][Full Text] [Related]
18. Cellulose nanostructures obtained using enzymatic cocktails with different compositions. Bondancia TJ; Florencio C; Baccarin GS; Farinas CS Int J Biol Macromol; 2022 May; 207():299-307. PubMed ID: 35259434 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic hydrolysis and characterization of lignocellulosic biomass exposed to electron beam irradiation. Karthika K; Arun AB; Rekha PD Carbohydr Polym; 2012 Oct; 90(2):1038-45. PubMed ID: 22840037 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of nanocellulose carriers produced by four different bacterial strains for laccase immobilization. Yuan H; Chen L; Hong FF; Zhu M Carbohydr Polym; 2018 Sep; 196():457-464. PubMed ID: 29891318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]