These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 38099400)
41. Film-Sponge-Coupled Triboelectric Nanogenerator with Enhanced Contact Area Based on Direct Ultraviolet Laser Ablation. Cho H; Jo S; Kim I; Kim D ACS Appl Mater Interfaces; 2021 Oct; 13(40):48281-48291. PubMed ID: 34585913 [TBL] [Abstract][Full Text] [Related]
42. Enhanced Performance of Microarchitectured PTFE-Based Triboelectric Nanogenerator via Simple Thermal Imprinting Lithography for Self-Powered Electronics. Dudem B; Kim DH; Mule AR; Yu JS ACS Appl Mater Interfaces; 2018 Jul; 10(28):24181-24192. PubMed ID: 29947215 [TBL] [Abstract][Full Text] [Related]
43. Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density. Zhao Z; Dai Y; Liu D; Zhou L; Li S; Wang ZL; Wang J Nat Commun; 2020 Dec; 11(1):6186. PubMed ID: 33273477 [TBL] [Abstract][Full Text] [Related]
44. Novel 3D Printed Vortex-like Flexible Roller-Compacted Triboelectric Nanogenerator for Self-Powered Electrochemical Degradation of Organic Contaminants. Liu S; Liu Y; Chen Y; Wang S; Men C; Gao S ACS Appl Mater Interfaces; 2022 Apr; 14(15):17426-17433. PubMed ID: 35394737 [TBL] [Abstract][Full Text] [Related]
45. An Ultrarobust and High-Performance Rotational Hydrodynamic Triboelectric Nanogenerator Enabled by Automatic Mode Switching and Charge Excitation. Fu S; He W; Tang Q; Wang Z; Liu W; Li Q; Shan C; Long L; Hu C; Liu H Adv Mater; 2022 Jan; 34(2):e2105882. PubMed ID: 34617342 [TBL] [Abstract][Full Text] [Related]
46. Recent Progress of Switching Power Management for Triboelectric Nanogenerators. Zhou H; Liu G; Zeng J; Dai Y; Zhou W; Xiao C; Dang T; Yu W; Chen Y; Zhang C Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214570 [TBL] [Abstract][Full Text] [Related]
47. A Dual-Mode Triboelectric Nanogenerator for Wind Energy Harvesting and Self-Powered Wind Speed Monitoring. He L; Zhang C; Zhang B; Yang O; Yuan W; Zhou L; Zhao Z; Wu Z; Wang J; Wang ZL ACS Nano; 2022 Apr; 16(4):6244-6254. PubMed ID: 35312283 [TBL] [Abstract][Full Text] [Related]
48. Harsh Environmental-Tolerant and High-Performance Triboelectric Nanogenerator Based on Nanofiber/Microsphere Hybrid Membranes. Sun D; Cao R; Wu H; Li X; Yu H; Guo L Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676298 [TBL] [Abstract][Full Text] [Related]
49. Omni-directional wind-driven triboelectric nanogenerator with cross-shaped dielectric film. Shin Y; Cho S; Han S; Jung GY Nano Converg; 2021 Sep; 8(1):25. PubMed ID: 34473311 [TBL] [Abstract][Full Text] [Related]
50. A constant current triboelectric nanogenerator arising from electrostatic breakdown. Liu D; Yin X; Guo H; Zhou L; Li X; Zhang C; Wang J; Wang ZL Sci Adv; 2019 Apr; 5(4):eaav6437. PubMed ID: 30972365 [TBL] [Abstract][Full Text] [Related]
51. Enhancing the Output Performance of a Triboelectric Nanogenerator Based on Modified Polyimide and Sandwich-Structured Nanocomposite Film. Zhou J; Lu C; Lan D; Zhang Y; Lin Y; Wan L; Wei W; Liang Y; Guo D; Liu Y; Yu W Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985950 [TBL] [Abstract][Full Text] [Related]
52. High-output soft-contact fiber-structure triboelectric nanogenerator and its sterilization application. He J; Guo X; Pan C; Cheng G; Zheng M; Zi Y; Cui H; Li X Nanotechnology; 2023 Jul; 34(38):. PubMed ID: 37339612 [TBL] [Abstract][Full Text] [Related]
53. Achieving Ultrahigh Effective Surface Charge Density of Direct-Current Triboelectric Nanogenerator in High Humidity. Liu L; Zhao Z; Li Y; Li X; Liu D; Li S; Gao Y; Zhou L; Wang J; Wang ZL Small; 2022 Jun; 18(24):e2201402. PubMed ID: 35560726 [TBL] [Abstract][Full Text] [Related]
54. All-Weather Droplet-Based Triboelectric Nanogenerator for Wave Energy Harvesting. Wei X; Zhao Z; Zhang C; Yuan W; Wu Z; Wang J; Wang ZL ACS Nano; 2021 Aug; 15(8):13200-13208. PubMed ID: 34327988 [TBL] [Abstract][Full Text] [Related]
55. Improving the Output Efficiency of Triboelectric Nanogenerator by a Power Regulation Circuit. Li W; Leng B; Hu S; Cheng X Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430825 [TBL] [Abstract][Full Text] [Related]
56. Lightweight mobile stick-type water-based triboelectric nanogenerator with amplified current for portable safety devices. Cha K; Chung J; Heo D; Song M; Chung SH; Hwang PTJ; Kim D; Koo B; Hong J; Lee S Sci Technol Adv Mater; 2022; 23(1):161-168. PubMed ID: 35185391 [TBL] [Abstract][Full Text] [Related]
57. Fish Gelatin Based Triboelectric Nanogenerator for Harvesting Biomechanical Energy and Self-Powered Sensing of Human Physiological Signals. Han Y; Han Y; Zhang X; Li L; Zhang C; Liu J; Lu G; Yu HD; Huang W ACS Appl Mater Interfaces; 2020 Apr; 12(14):16442-16450. PubMed ID: 32172560 [TBL] [Abstract][Full Text] [Related]
58. A High-Performance Flag-Type Triboelectric Nanogenerator for Scavenging Wind Energy toward Self-Powered IoTs. Zou Y; Sun M; Yan F; Du T; Xi Z; Li F; Zhu C; Wang H; Zhao J; Sun P; Xu M Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629721 [TBL] [Abstract][Full Text] [Related]
59. Silicone-Based Triboelectric Nanogenerator for Water Wave Energy Harvesting. Xiao TX; Jiang T; Zhu JX; Liang X; Xu L; Shao JJ; Zhang CL; Wang J; Wang ZL ACS Appl Mater Interfaces; 2018 Jan; 10(4):3616-3623. PubMed ID: 29293321 [TBL] [Abstract][Full Text] [Related]
60. Cost-Effective Copper⁻Nickel-Based Triboelectric Nanogenerator for Corrosion-Resistant and High-Output Self-Powered Wearable Electronic Systems. Xia K; Xu Z; Zhu Z; Zhang H; Nie Y Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31060301 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]