BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 38099496)

  • 1. Rational design of a SOCS1-edited tumor-infiltrating lymphocyte therapy using CRISPR/Cas9 screens.
    Schlabach MR; Lin S; Collester ZR; Wrocklage C; Shenker S; Calnan C; Xu T; Gannon HS; Williams LJ; Thompson F; Dunbar PR; LaMothe RA; Garrett TE; Colletti N; Hohmann AF; Tubo NJ; Bullock CP; Le Mercier I; Sofjan K; Merkin JJ; Keegan S; Kryukov GV; Dugopolski C; Stegmeier F; Wong K; Sharp FA; Cadzow L; Benson MJ
    J Clin Invest; 2023 Dec; 133(24):. PubMed ID: 38099496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo genome-wide CRISPR screens identify SOCS1 as intrinsic checkpoint of CD4
    Sutra Del Galy A; Menegatti S; Fuentealba J; Lucibello F; Perrin L; Helft J; Darbois A; Saitakis M; Tosello J; Rookhuizen D; Deloger M; Gestraud P; Socié G; Amigorena S; Lantz O; Menger L
    Sci Immunol; 2021 Dec; 6(66):eabe8219. PubMed ID: 34860579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy.
    Wei J; Long L; Zheng W; Dhungana Y; Lim SA; Guy C; Wang Y; Wang YD; Qian C; Xu B; Kc A; Saravia J; Huang H; Yu J; Doench JG; Geiger TL; Chi H
    Nature; 2019 Dec; 576(7787):471-476. PubMed ID: 31827283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment.
    Mollanoori H; Shahraki H; Rahmati Y; Teimourian S
    Hum Immunol; 2018 Dec; 79(12):876-882. PubMed ID: 30261221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of CRISPR/Cas9 System and CAR-T Cell Therapy: A New Era for Refractory and Relapsed Hematological Malignancies.
    Hu KJ; Yin ETS; Hu YX; Huang H
    Curr Med Sci; 2021 Jun; 41(3):420-430. PubMed ID: 34218353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer.
    Lu Y; Xue J; Deng T; Zhou X; Yu K; Deng L; Huang M; Yi X; Liang M; Wang Y; Shen H; Tong R; Wang W; Li L; Song J; Li J; Su X; Ding Z; Gong Y; Zhu J; Wang Y; Zou B; Zhang Y; Li Y; Zhou L; Liu Y; Yu M; Wang Y; Zhang X; Yin L; Xia X; Zeng Y; Zhou Q; Ying B; Chen C; Wei Y; Li W; Mok T
    Nat Med; 2020 May; 26(5):732-740. PubMed ID: 32341578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimisation of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 : single-guide RNA (sgRNA) delivery system in a goat model.
    Huang Y; Ding Y; Liu Y; Zhou S; Ding Q; Yan H; Ma B; Zhao X; Wang X; Chen Y
    Reprod Fertil Dev; 2019 Aug; 31(9):1533-1537. PubMed ID: 31079595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Innovative Strategies of Reprogramming Immune System Cells by Targeting CRISPR/Cas9-Based Genome-Editing Tools: A New Era of Cancer Management.
    Allemailem KS; Alsahli MA; Almatroudi A; Alrumaihi F; Al Abdulmonem W; Moawad AA; Alwanian WM; Almansour NM; Rahmani AH; Khan AA
    Int J Nanomedicine; 2023; 18():5531-5559. PubMed ID: 37795042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of Genome-Edited Mice by Cytoplasmic Injection of CRISPR-Cas9 RNA.
    Horii T; Hatada I
    Methods Mol Biol; 2023; 2637():75-86. PubMed ID: 36773139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Cas9 for cancer therapy: Opportunities and challenges.
    Chen M; Mao A; Xu M; Weng Q; Mao J; Ji J
    Cancer Lett; 2019 Apr; 447():48-55. PubMed ID: 30684591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programmed cell death ligand 1 disruption by clustered regularly interspaced short palindromic repeats/Cas9-genome editing promotes antitumor immunity and suppresses ovarian cancer progression.
    Yahata T; Mizoguchi M; Kimura A; Orimo T; Toujima S; Kuninaka Y; Nosaka M; Ishida Y; Sasaki I; Fukuda-Ohta Y; Hemmi H; Iwahashi N; Noguchi T; Kaisho T; Kondo T; Ino K
    Cancer Sci; 2019 Apr; 110(4):1279-1292. PubMed ID: 30702189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells.
    Dong MB; Wang G; Chow RD; Ye L; Zhu L; Dai X; Park JJ; Kim HR; Errami Y; Guzman CD; Zhou X; Chen KY; Renauer PA; Du Y; Shen J; Lam SZ; Zhou JJ; Lannin DR; Herbst RS; Chen S
    Cell; 2019 Aug; 178(5):1189-1204.e23. PubMed ID: 31442407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internal checkpoint regulates T cell neoantigen reactivity and susceptibility to PD1 blockade.
    Palmer DC; Webber BR; Patel Y; Johnson MJ; Kariya CM; Lahr WS; Parkhurst MR; Gartner JJ; Prickett TD; Lowery FJ; Kishton RJ; Gurusamy D; Franco Z; Vodnala SK; Diers MD; Wolf NK; Slipek NJ; McKenna DH; Sumstad D; Viney L; Henley T; Bürckstümmer T; Baker O; Hu Y; Yan C; Meerzaman D; Padhan K; Lo W; Malekzadeh P; Jia L; Deniger DC; Patel SJ; Robbins PF; McIvor RS; Choudhry M; Rosenberg SA; Moriarity BS; Restifo NP
    Med; 2022 Oct; 3(10):682-704.e8. PubMed ID: 36007524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CIS deletion by CRISPR/Cas9 enhances human primary natural killer cell functions against allogeneic glioblastoma.
    Nakazawa T; Morimoto T; Maeoka R; Matsuda R; Nakamura M; Nishimura F; Ouji N; Yamada S; Nakagawa I; Park YS; Ito T; Nakase H; Tsujimura T
    J Exp Clin Cancer Res; 2023 Aug; 42(1):205. PubMed ID: 37563692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The application of CRISPR-Cas9 genome editing tool in cancer immunotherapy.
    Wu HY; Cao CY
    Brief Funct Genomics; 2019 Mar; 18(2):129-132. PubMed ID: 29579146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo CRISPR screening in CD8 T cells with AAV-Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma.
    Ye L; Park JJ; Dong MB; Yang Q; Chow RD; Peng L; Du Y; Guo J; Dai X; Wang G; Errami Y; Chen S
    Nat Biotechnol; 2019 Nov; 37(11):1302-1313. PubMed ID: 31548728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering T Cells Using CRISPR/Cas9 for Cancer Therapy.
    Zhang X; Cheng C; Sun W; Wang H
    Methods Mol Biol; 2020; 2115():419-433. PubMed ID: 32006414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation.
    Doench JG; Hartenian E; Graham DB; Tothova Z; Hegde M; Smith I; Sullender M; Ebert BL; Xavier RJ; Root DE
    Nat Biotechnol; 2014 Dec; 32(12):1262-7. PubMed ID: 25184501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-mediated TGFBR2 knockout renders human ovarian cancer tumor-infiltrating lymphocytes resistant to TGF-β signaling.
    Fix SM; Forget MA; Sakellariou-Thompson D; Wang Y; Griffiths TM; Lee M; Haymaker CL; Dominguez AL; Basar R; Reyes C; Kumar S; Meyer LA; Hwu P; Bernatchez C; Jazaeri AA
    J Immunother Cancer; 2022 Jul; 10(7):. PubMed ID: 35882447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas: From Tumor Gene Editing to T Cell-Based Immunotherapy of Cancer.
    Azangou-Khyavy M; Ghasemi M; Khanali J; Boroomand-Saboor M; Jamalkhah M; Soleimani M; Kiani J
    Front Immunol; 2020; 11():2062. PubMed ID: 33117331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.