BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 38099497)

  • 21. ZNF397 Loss Triggers TET2-driven Epigenetic Rewiring, Lineage Plasticity, and AR-targeted Therapy Resistance in AR-dependent Cancers.
    Xu Y; Wang Z; Sjöström M; Deng S; Wang C; Johnson NA; Gonzalez J; Li X; Metang LA; Tirado CR; Mukherji A; Wainwright G; Yu X; Yang Y; Barnes S; Hofstad M; Zhu H; Hanker A; He HH; Chen Y; Wang Z; Raj G; Arteaga C; Feng F; Wang Y; Wang T; Mu P
    bioRxiv; 2023 Oct; ():. PubMed ID: 37961351
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting Key Players of Neuroendocrine Differentiation in Prostate Cancer.
    Zamora I; Freeman MR; Encío IJ; Rotinen M
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37761978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FOXA1 inhibits prostate cancer neuroendocrine differentiation.
    Kim J; Jin H; Zhao JC; Yang YA; Li Y; Yang X; Dong X; Yu J
    Oncogene; 2017 Jul; 36(28):4072-4080. PubMed ID: 28319070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epigenetic reprogramming during prostate cancer progression: A perspective from development.
    Goel S; Bhatia V; Biswas T; Ateeq B
    Semin Cancer Biol; 2022 Aug; 83():136-151. PubMed ID: 33545340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA Splicing of the BHC80 Gene Contributes to Neuroendocrine Prostate Cancer Progression.
    Li Y; Xie N; Chen R; Lee AR; Lovnicki J; Morrison EA; Fazli L; Zhang Q; Musselman CA; Wang Y; Huang J; Gleave ME; Collins C; Dong X
    Eur Urol; 2019 Aug; 76(2):157-166. PubMed ID: 30910347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Current advances of targeting epigenetic modifications in neuroendocrine prostate cancer.
    Cheng WC; Wang HJ
    Tzu Chi Med J; 2021; 33(3):224-232. PubMed ID: 34386358
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance.
    Beltran H; Hruszkewycz A; Scher HI; Hildesheim J; Isaacs J; Yu EY; Kelly K; Lin D; Dicker A; Arnold J; Hecht T; Wicha M; Sears R; Rowley D; White R; Gulley JL; Lee J; Diaz Meco M; Small EJ; Shen M; Knudsen K; Goodrich DW; Lotan T; Zoubeidi A; Sawyers CL; Rudin CM; Loda M; Thompson T; Rubin MA; Tawab-Amiri A; Dahut W; Nelson PS
    Clin Cancer Res; 2019 Dec; 25(23):6916-6924. PubMed ID: 31363002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extracellular signal-regulated kinase mediates chromatin rewiring and lineage transformation in lung cancer.
    Inoue Y; Nikolic A; Farnsworth D; Shi R; Johnson FD; Liu A; Ladanyi M; Somwar R; Gallo M; Lockwood WW
    Elife; 2021 Jun; 10():. PubMed ID: 34121659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A transgenic mouse model of metastatic prostate cancer originating from neuroendocrine cells.
    Garabedian EM; Humphrey PA; Gordon JI
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15382-7. PubMed ID: 9860977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The ELAVL3/MYCN positive feedback loop provides a therapeutic target for neuroendocrine prostate cancer.
    Ji Y; Zhang W; Shen K; Su R; Liu X; Ma Z; Liu B; Hu C; Xue Y; Xin Z; Yang Y; Li A; Jiang Z; Jing N; Zhu HH; Dong L; Zhu Y; Dong B; Pan J; Wang Q; Xue W
    Nat Commun; 2023 Nov; 14(1):7794. PubMed ID: 38016952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GRK3 is a direct target of CREB activation and regulates neuroendocrine differentiation of prostate cancer cells.
    Sang M; Hulsurkar M; Zhang X; Song H; Zheng D; Zhang Y; Li M; Xu J; Zhang S; Ittmann M; Li W
    Oncotarget; 2016 Jul; 7(29):45171-45185. PubMed ID: 27191986
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activated ALK Cooperates with N-Myc via Wnt/β-Catenin Signaling to Induce Neuroendocrine Prostate Cancer.
    Unno K; Chalmers ZR; Pamarthy S; Vatapalli R; Rodriguez Y; Lysy B; Mok H; Sagar V; Han H; Yoo YA; Ku SY; Beltran H; Zhao Y; Abdulkadir SA
    Cancer Res; 2021 Apr; 81(8):2157-2170. PubMed ID: 33637566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer.
    Dardenne E; Beltran H; Benelli M; Gayvert K; Berger A; Puca L; Cyrta J; Sboner A; Noorzad Z; MacDonald T; Cheung C; Yuen KS; Gao D; Chen Y; Eilers M; Mosquera JM; Robinson BD; Elemento O; Rubin MA; Demichelis F; Rickman DS
    Cancer Cell; 2016 Oct; 30(4):563-577. PubMed ID: 27728805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The β
    Braadland PR; Ramberg H; Grytli HH; Urbanucci A; Nielsen HK; Guldvik IJ; Engedal A; Ketola K; Wang W; Svindland A; Mills IG; Bjartell A; Taskén KA
    Mol Cancer Res; 2019 Nov; 17(11):2154-2168. PubMed ID: 31395667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Roles of achaete-scute homologue 1 in DKK1 and E-cadherin repression and neuroendocrine differentiation in lung cancer.
    Osada H; Tomida S; Yatabe Y; Tatematsu Y; Takeuchi T; Murakami H; Kondo Y; Sekido Y; Takahashi T
    Cancer Res; 2008 Mar; 68(6):1647-55. PubMed ID: 18339843
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential therapeutic effect of epigenetic therapy on treatment-induced neuroendocrine prostate cancer.
    Xu X; Huang YH; Li YJ; Cohen A; Li Z; Squires J; Zhang W; Chen XF; Zhang M; Huang JT
    Asian J Androl; 2017; 19(6):686-693. PubMed ID: 27905327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel mechanism of SRRM4 in promoting neuroendocrine prostate cancer development via a pluripotency gene network.
    Lee AR; Gan Y; Tang Y; Dong X
    EBioMedicine; 2018 Sep; 35():167-177. PubMed ID: 30100395
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer.
    Singh N; Ramnarine VR; Song JH; Pandey R; Padi SKR; Nouri M; Olive V; Kobelev M; Okumura K; McCarthy D; Hanna MM; Mukherjee P; Sun B; Lee BR; Parker JB; Chakravarti D; Warfel NA; Zhou M; Bearss JJ; Gibb EA; Alshalalfa M; Karnes RJ; Small EJ; Aggarwal R; Feng F; Wang Y; Buttyan R; Zoubeidi A; Rubin M; Gleave M; Slack FJ; Davicioni E; Beltran H; Collins C; Kraft AS
    Nat Commun; 2021 Dec; 12(1):7349. PubMed ID: 34934057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer.
    Maina PK; Shao P; Liu Q; Fazli L; Tyler S; Nasir M; Dong X; Qi HH
    Oncotarget; 2016 Nov; 7(46):75585-75602. PubMed ID: 27689328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wntless expression promotes lineage plasticity and is associated with neuroendocrine prostate cancer.
    D'Abronzo LS; Lombard AP; Ning S; Armstong CM; Leslie AR; Sharifi M; Schaaf ZA; Lou W; Gao AC
    Am J Clin Exp Urol; 2022; 10(5):299-310. PubMed ID: 36313205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.