These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 38099834)
21. Activation of polymeric nanoparticle intracellular targeting overcomes chemodrug resistance in human primary patient breast cancer cells. Abou-El-Naga AM; Mutawa G; El-Sherbiny IM; Mousa SA Int J Nanomedicine; 2018; 13():8153-8164. PubMed ID: 30555232 [TBL] [Abstract][Full Text] [Related]
22. Preparation of 10-hydroxycamptothecin-loaded glycyrrhizic acid-conjugated bovine serum albumin nanoparticles for hepatocellular carcinoma-targeted drug delivery. Zu Y; Meng L; Zhao X; Ge Y; Yu X; Zhang Y; Deng Y Int J Nanomedicine; 2013; 8():1207-22. PubMed ID: 23569373 [TBL] [Abstract][Full Text] [Related]
23. Poly(ethyleneglycol)-b-poly(ε-caprolactone-co-γ-hydroxyl-ε- caprolactone) bearing pendant hydroxyl groups as nanocarriers for doxorubicin delivery. Chang L; Deng L; Wang W; Lv Z; Hu F; Dong A; Zhang J Biomacromolecules; 2012 Oct; 13(10):3301-10. PubMed ID: 22931197 [TBL] [Abstract][Full Text] [Related]
24. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Wang H; Zhao Y; Wu Y; Hu YL; Nan K; Nie G; Chen H Biomaterials; 2011 Nov; 32(32):8281-90. PubMed ID: 21807411 [TBL] [Abstract][Full Text] [Related]
25. Drug-binding albumins forming stabilized nanoparticles for co-delivery of paclitaxel and resveratrol: In vitro/in vivo evaluation and binding properties investigation. Zhao Y; Cai C; Liu M; Zhao Y; Wu Y; Fan Z; Ding Z; Zhang H; Wang Z; Han J Int J Biol Macromol; 2020 Jun; 153():873-882. PubMed ID: 32169451 [TBL] [Abstract][Full Text] [Related]
26. Carrier-free nanomedicines self-assembled from palbociclib dimers and Ce6 for enhanced combined chemo-photodynamic therapy of breast cancer. Huang Z; Hu H; Xian T; Xu Z; Tang D; Wang B; Zhang Y RSC Adv; 2023 Jan; 13(3):1617-1626. PubMed ID: 36688062 [TBL] [Abstract][Full Text] [Related]
27. Doxorubicin Intracellular Release El Founi M; Laroui H; Canup BSB; Ametepe JS; Vanderesse R; Acherar S; Babin J; Ferji K; Chevalot I; Six JL ACS Appl Bio Mater; 2021 Mar; 4(3):2742-2751. PubMed ID: 35014313 [TBL] [Abstract][Full Text] [Related]
28. Curcumin-loaded galactosylated BSA nanoparticles as targeted drug delivery carriers inhibit hepatocellular carcinoma cell proliferation and migration. Huang Y; Hu L; Huang S; Xu W; Wan J; Wang D; Zheng G; Xia Z Int J Nanomedicine; 2018; 13():8309-8323. PubMed ID: 30584302 [TBL] [Abstract][Full Text] [Related]
29. Dual-targeting nanoparticles with core-crosslinked and pH/redox-bioresponsive properties for enhanced intracellular drug delivery. Zhao J; Yan C; Chen Z; Liu J; Song H; Wang W; Liu J; Yang N; Zhao Y; Chen L J Colloid Interface Sci; 2019 Mar; 540():66-77. PubMed ID: 30634060 [TBL] [Abstract][Full Text] [Related]
30. Amorphous amphiphilic P(3HV-co-4HB)-b-mPEG block copolymer synthesized from bacterial copolyester via melt transesterification: nanoparticle preparation, cisplatin-loading for cancer therapy and in vitro evaluation. Shah M; Ullah N; Choi MH; Kim MO; Yoon SC Eur J Pharm Biopharm; 2012 Apr; 80(3):518-27. PubMed ID: 22178562 [TBL] [Abstract][Full Text] [Related]
31. pH and redox dual-sensitive polysaccharide nanoparticles for the efficient delivery of doxorubicin. Yang S; Tang Z; Zhang D; Deng M; Chen X Biomater Sci; 2017 Sep; 5(10):2169-2178. PubMed ID: 28914292 [TBL] [Abstract][Full Text] [Related]
32. Immune Cell-Mediated Biodegradable Theranostic Nanoparticles for Melanoma Targeting and Drug Delivery. Xie Z; Su Y; Kim GB; Selvi E; Ma C; Aragon-Sanabria V; Hsieh JT; Dong C; Yang J Small; 2017 Mar; 13(10):. PubMed ID: 28026115 [TBL] [Abstract][Full Text] [Related]
33. Vinblastine-Loaded Nanoparticles with Enhanced Tumor-Targeting Efficiency and Decreasing Toxicity: Developed by One-Step Molecular Imprinting Process. Zhu Y; Liu R; Huang H; Zhu Q Mol Pharm; 2019 Jun; 16(6):2675-2689. PubMed ID: 31050894 [TBL] [Abstract][Full Text] [Related]
34. Self-Assembled Supramolecular Bilayer Nanoparticles Composed of Near-Infrared Dye as a Theranostic Nanoplatform To Encapsulate Hydrophilic Drugs Effectively. Jeong C; Noh I; Rejinold NS; Kim J; Jon S; Kim YC ACS Biomater Sci Eng; 2020 Jan; 6(1):474-484. PubMed ID: 33463245 [TBL] [Abstract][Full Text] [Related]
36. Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomes. Jin M; Jin G; Kang L; Chen L; Gao Z; Huang W Int J Nanomedicine; 2018; 13():2405-2426. PubMed ID: 29719390 [TBL] [Abstract][Full Text] [Related]
37. Novel self-assembled amphiphilic poly(epsilon-caprolactone)-grafted-poly(vinyl alcohol) nanoparticles: hydrophobic and hydrophilic drugs carrier nanoparticles. Sheikh FA; Barakat NA; Kanjwal MA; Aryal S; Khil MS; Kim HY J Mater Sci Mater Med; 2009 Mar; 20(3):821-31. PubMed ID: 19020953 [TBL] [Abstract][Full Text] [Related]
38. The in vivo fate of nanoparticles and nanoparticle-loaded microcapsules after oral administration in mice: Evaluation of their potential for colon-specific delivery. Ma Y; Fuchs AV; Boase NR; Rolfe BE; Coombes AG; Thurecht KJ Eur J Pharm Biopharm; 2015 Aug; 94():393-403. PubMed ID: 26117186 [TBL] [Abstract][Full Text] [Related]
39. Effect of alkyl chain on cellular uptake and antitumor activity of hydroxycamptothecin nanoparticles based on amphiphilic linear molecules. Guo Y; Wang T; Zhao S; Qiu H; Han M; Dong Z; Wang X Eur J Pharm Sci; 2018 Nov; 124():266-272. PubMed ID: 30189259 [TBL] [Abstract][Full Text] [Related]
40. Amphiphilic core-shell nanoparticles containing dense polyethyleneimine shells for efficient delivery of microRNA to Kupffer cells. Liu Z; Niu D; Zhang J; Zhang W; Yao Y; Li P; Gong J Int J Nanomedicine; 2016; 11():2785-97. PubMed ID: 27366061 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]