These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 381000)

  • 1. Mitochondrial protein-synthesizing machinery in Saccharomyces cerevisiae grown in different metabolic conditions. Variability of seryl-tRNA and alanyl-tRNA isoacceptor patterns.
    Baldacci G; Falcone C; Francisci S; Frontali L; Palleschi C
    Eur J Biochem; 1979 Jul; 98(1):181-6. PubMed ID: 381000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of yeast mitochondrial tRNAs by two-dimensional polyacrylamide gel electrophoresis: characterization of isoaccepting species and search for imported cytoplasmic tRNAs.
    Martin RP; Schneller JM; Stahl AJ; Dirheimer G
    Nucleic Acids Res; 1977 Oct; 4(10):3497-510. PubMed ID: 337238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems.
    Fender A; Sissler M; Florentz C; Giegé R
    Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two isoaccepting seryl tRNAs coded by separate mitochondrial genes in yeast.
    Colletti E; Frontali L; Palleschi C; Wesolowski M; Fukuhara H
    Mol Gen Genet; 1979 Aug; 175(1):1-4. PubMed ID: 390301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple isoacceptor forms of several transfer ribonucleic acids in a mutant yeast strain.
    Bell JB; Jacobson KB; Shugart LR
    Can J Biochem; 1978 Jan; 56(1):51-9. PubMed ID: 378329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coding origin of isoaccepting tRNA in yeast mitochondria.
    Schneller JM; Stahl A; Fukuhara H
    Biochimie; 1975; 57(9):1051-7. PubMed ID: 769848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of Arabidopsis thaliana mitochondrial alanyl-tRNA synthetase is not sufficient to trigger mitochondrial import of tRNAAla in yeast.
    Mireau H; Cosset A; Marechal-Drouard L; Fox TD; Small ID; Dietrich A
    J Biol Chem; 2000 May; 275(18):13291-6. PubMed ID: 10788435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acceptor activity, isoacceptor profiles and function in protein synthesis of transfer RNAs from regenerating skeletal muscle.
    Jones GH
    Biochim Biophys Acta; 1983 Dec; 741(3):333-40. PubMed ID: 6557823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial tRNA import and its consequences for mitochondrial translation.
    Schneider A
    Annu Rev Biochem; 2011; 80():1033-53. PubMed ID: 21417719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer ribonucleic acids from eleven immunoglobulin-secreting mouse plasmacytomas. Constant and variable chromatographic profiles compared with the myeloma protein sequences.
    Marini M; Mushinski JF
    Biochim Biophys Acta; 1979 Apr; 562(2):252-70. PubMed ID: 255344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Moonlighting Human Protein Is Involved in Mitochondrial Import of tRNA.
    Baleva M; Gowher A; Kamenski P; Tarassov I; Entelis N; Masquida B
    Int J Mol Sci; 2015 Apr; 16(5):9354-67. PubMed ID: 25918939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isoaccepting mitochondrial glutamyl-tRNA species transcribed from different regions of the mitochondrial genome of Saccharomyces cerevisiae.
    Martin N; Rabinowitz M; Fukuhara H
    J Mol Biol; 1976 Mar; 101(3):285-96. PubMed ID: 768489
    [No Abstract]   [Full Text] [Related]  

  • 13. Autophagy facilitates adaptation of budding yeast to respiratory growth by recycling serine for one-carbon metabolism.
    May AI; Prescott M; Ohsumi Y
    Nat Commun; 2020 Oct; 11(1):5052. PubMed ID: 33028817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatographic and functional comparison of human placenta and HeLa cell tyrosine transfer ribonucleic acids.
    Olsen CE; Penhoet EE
    Biochemistry; 1976 Oct; 15(21):4649-54. PubMed ID: 974082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of oxygen tension and glucose repression of mitochondrial protein synthesis in continuous cultures of Saccharomyces cerevisiae.
    Rogers PJ; Yue SB; Stewart PR
    J Bacteriol; 1974 May; 118(2):523-33. PubMed ID: 4275173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maize seryl-tRNA synthetase: specificity of substrate recognition by the organellar enzyme.
    Rokov-Plavec J; Lesjak S; Landeka I; Mijakovic I; Weygand-Durasevic I
    Arch Biochem Biophys; 2002 Jan; 397(1):40-50. PubMed ID: 11747308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in tRNA isoaccepting species during erythroid differentiation of the Friend leukemia cell.
    Lin VK; Agris PF
    Nucleic Acids Res; 1980 Aug; 8(15):3467-80. PubMed ID: 6904970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nuclear tRNA aminoacylation-dependent pathway may be the principal route used to export tRNA from the nucleus in Saccharomyces cerevisiae.
    Steiner-Mosonyi M; Mangroo D
    Biochem J; 2004 Mar; 378(Pt 3):809-16. PubMed ID: 14640976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ethionine on the in vitro synthesis and degradation of mitochondrial translation products in yeast.
    Téllez R; Jacob G; Basilio C; George-Nascimento C
    FEBS Lett; 1985 Nov; 192(1):88-94. PubMed ID: 3902507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glu-tRNAGln: an intermediate in yeast mitochondrial protein synthesis.
    Martin NC; Rabinowitz M
    Methods Enzymol; 1984; 106():152-7. PubMed ID: 6387370
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.