BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 38100361)

  • 1. tRNA shape is an identity element for an archaeal pyrrolysyl-tRNA synthetase from the human gut.
    Krahn N; Zhang J; Melnikov SV; Tharp JM; Villa A; Patel A; Howard RJ; Gabir H; Patel TR; Stetefeld J; Puglisi J; Söll D
    Nucleic Acids Res; 2024 Jan; 52(2):513-524. PubMed ID: 38100361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ancestral archaea expanded the genetic code with pyrrolysine.
    Guo LT; Amikura K; Jiang HK; Mukai T; Fu X; Wang YS; O'Donoghue P; Söll D; Tharp JM
    J Biol Chem; 2022 Nov; 298(11):102521. PubMed ID: 36152750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploration of
    Stieglitz JT; Lahiri P; Stout MI; Van Deventer JA
    ACS Synth Biol; 2022 May; 11(5):1824-1834. PubMed ID: 35417129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tRNA discriminator base defines the mutual orthogonality of two distinct pyrrolysyl-tRNA synthetase/tRNAPyl pairs in the same organism.
    Zhang H; Gong X; Zhao Q; Mukai T; Vargas-Rodriguez O; Zhang H; Zhang Y; Wassel P; Amikura K; Maupin-Furlow J; Ren Y; Xu X; Wolf YI; Makarova KS; Koonin EV; Shen Y; Söll D; Fu X
    Nucleic Acids Res; 2022 May; 50(8):4601-4615. PubMed ID: 35466371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Update of the Pyrrolysyl-tRNA Synthetase/tRNA
    Gong X; Zhang H; Shen Y; Fu X
    J Bacteriol; 2023 Feb; 205(2):e0038522. PubMed ID: 36695595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Evolved Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetase/tRNA Pair Is Highly Active and Orthogonal in Mammalian Cells.
    Beránek V; Willis JCW; Chin JW
    Biochemistry; 2019 Feb; 58(5):387-390. PubMed ID: 30260626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generating Efficient
    Avila-Crump S; Hemshorn ML; Jones CM; Mbengi L; Meyer K; Griffis JA; Jana S; Petrina GE; Pagar VV; Karplus PA; Petersson EJ; Perona JJ; Mehl RA; Cooley RB
    ACS Chem Biol; 2022 Dec; 17(12):3458-3469. PubMed ID: 36383641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of non-alpha-amino substrates by pyrrolysyl-tRNA synthetase.
    Kobayashi T; Yanagisawa T; Sakamoto K; Yokoyama S
    J Mol Biol; 2009 Feb; 385(5):1352-60. PubMed ID: 19100747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transferability of N-terminal mutations of pyrrolysyl-tRNA synthetase in one species to that in another species on unnatural amino acid incorporation efficiency.
    Williams TL; Iskandar DJ; Nödling AR; Tan Y; Luk LYP; Tsai YH
    Amino Acids; 2021 Jan; 53(1):89-96. PubMed ID: 33331978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal Structure of Pyrrolysyl-tRNA Synthetase from a Methanogenic Archaeon ISO4-G1 and Its Structure-Based Engineering for Highly-Productive Cell-Free Genetic Code Expansion with Non-Canonical Amino Acids.
    Yanagisawa T; Seki E; Tanabe H; Fujii Y; Sakamoto K; Yokoyama S
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methanomethylophilus alvus Mx1201 Provides Basis for Mutual Orthogonal Pyrrolysyl tRNA/Aminoacyl-tRNA Synthetase Pairs in Mammalian Cells.
    Meineke B; Heimgärtner J; Lafranchi L; Elsässer SJ
    ACS Chem Biol; 2018 Nov; 13(11):3087-3096. PubMed ID: 30260624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrrolysyl-tRNA Synthetase with a Unique Architecture Enhances the Availability of Lysine Derivatives in Synthetic Genetic Codes.
    Yamaguchi A; Iraha F; Ohtake K; Sakamoto K
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30261594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. tRNA
    Tharp JM; Ehnbom A; Liu WR
    RNA Biol; 2018; 15(4-5):441-452. PubMed ID: 28837402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of pyrrolysine tRNA by the Desulfitobacterium hafniense pyrrolysyl-tRNA synthetase.
    Herring S; Ambrogelly A; Polycarpo CR; Söll D
    Nucleic Acids Res; 2007; 35(4):1270-8. PubMed ID: 17267409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully Productive Cell-Free Genetic Code Expansion by Structure-Based Engineering of
    Seki E; Yanagisawa T; Kuratani M; Sakamoto K; Yokoyama S
    ACS Synth Biol; 2020 Apr; 9(4):718-732. PubMed ID: 32182048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures of
    Gottfried-Lee I; Perona JJ; Karplus PA; Mehl RA; Cooley RB
    ACS Chem Biol; 2022 Dec; 17(12):3470-3477. PubMed ID: 36395426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids.
    Fan C; Xiong H; Reynolds NM; Söll D
    Nucleic Acids Res; 2015 Dec; 43(22):e156. PubMed ID: 26250114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality.
    Nozawa K; O'Donoghue P; Gundllapalli S; Araiso Y; Ishitani R; Umehara T; Söll D; Nureki O
    Nature; 2009 Feb; 457(7233):1163-7. PubMed ID: 19118381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallographic studies on multiple conformational states of active-site loops in pyrrolysyl-tRNA synthetase.
    Yanagisawa T; Ishii R; Fukunaga R; Kobayashi T; Sakamoto K; Yokoyama S
    J Mol Biol; 2008 May; 378(3):634-52. PubMed ID: 18387634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The amino-terminal domain of pyrrolysyl-tRNA synthetase is dispensable in vitro but required for in vivo activity.
    Herring S; Ambrogelly A; Gundllapalli S; O'Donoghue P; Polycarpo CR; Söll D
    FEBS Lett; 2007 Jul; 581(17):3197-203. PubMed ID: 17582401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.