These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38100363)

  • 41. Magnetically and Electrically Responsive Soft Actuator Derived from Ferromagnetic Bimetallic Organic Framework.
    Sambyal P; Mahato M; Taseer AK; Yoo H; Garai M; Nguyen VH; Ali SS; Oh IK
    Small; 2023 Jun; 19(23):e2207140. PubMed ID: 36908006
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Programmable and Self-Healing Light-Driven Actuators through Synergetic Use of Water-Shaping and -Welding Methods.
    Weng M; Xiao Y; Yao L; Zhang W; Zhou P; Chen L
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55125-55133. PubMed ID: 33253523
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 4D Printed Shape-Memory Elastomer for Thermally Programmable Soft Actuators.
    Song Q; Chen Y; Slesarenko V; Zhu P; Hamza A; Hou P; Helmer D; Kotz-Helmer F; Rapp BE
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):40923-40932. PubMed ID: 37595953
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3D printable, tough, magnetic hydrogels with programmed magnetization for fast actuation.
    Tang J; Sun B; Yin Q; Yang M; Hu J; Wang T
    J Mater Chem B; 2021 Nov; 9(44):9183-9190. PubMed ID: 34698328
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 4D printing of a self-morphing polymer driven by a swellable guest medium.
    Su JW; Tao X; Deng H; Zhang C; Jiang S; Lin Y; Lin J
    Soft Matter; 2018 Jan; 14(5):765-772. PubMed ID: 29302670
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Printable Magnetic-Responsive Iron Oxide Nanoparticle (ION)-Gelatin Methacryloyl (GelMA) Ink for Soft Bioactuator/Robot Applications.
    Yang HW; Yeh NT; Chen TC; Yeh YC; Lee IC; Li YE
    Polymers (Basel); 2023 Dec; 16(1):. PubMed ID: 38201691
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direct Ink Writing of Strained Carbon Nanotube-Based Sensors: Toward 4D Printable Soft Robotics.
    Joharji L; Alam F; El-Atab N
    ACS Omega; 2024 Mar; 9(12):14638-14647. PubMed ID: 38559947
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Soft Actuators with Stiffness and Shape Modulation Using 3D-Printed Conductive Polylactic Acid Material.
    Al-Rubaiai M; Pinto T; Qian C; Tan X
    Soft Robot; 2019 Jun; 6(3):318-332. PubMed ID: 30855215
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Direct 4D printing via active composite materials.
    Ding Z; Yuan C; Peng X; Wang T; Qi HJ; Dunn ML
    Sci Adv; 2017 Apr; 3(4):e1602890. PubMed ID: 28439560
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Programming Shape-Morphing Behavior of Liquid Crystal Elastomers via Parameter-Encoded 4D Printing.
    Ren L; Li B; He Y; Song Z; Zhou X; Liu Q; Ren L
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15562-15572. PubMed ID: 32157863
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3D printing of robotic soft actuators with programmable bioinspired architectures.
    Schaffner M; Faber JA; Pianegonda L; Rühs PA; Coulter F; Studart AR
    Nat Commun; 2018 Feb; 9(1):878. PubMed ID: 29491371
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Four-Dimensional Printing of Temperature-Responsive Liquid Crystal Elastomers with Programmable Shape-Changing Behavior.
    Li S; Song Z; Fan Y; Wei D; Liu Y
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37218782
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioinspired Three-Dimensional-Printed Helical Soft Pneumatic Actuators and Their Characterization.
    Hu W; Alici G
    Soft Robot; 2020 Jun; 7(3):267-282. PubMed ID: 31687877
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 4D Printing Elastic Composites for Strain-Tailored Multistable Shape Morphing.
    Deng H; Zhang C; Sattari K; Ling Y; Su JW; Yan Z; Lin J
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12719-12725. PubMed ID: 33326205
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Dual-Responsive Magnetoactive and Electro-Ionic Soft Actuator Derived from a Nickel-Based Metal-Organic Framework.
    Mahato M; Hwang WJ; Tabassian R; Oh S; Nguyen VH; Nam S; Kim JS; Yoo H; Taseer AK; Lee MJ; Zhang H; Song TE; Oh IK
    Adv Mater; 2022 Sep; 34(35):e2203613. PubMed ID: 35772104
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 4D Printing of Robust Hydrogels Consisted of Agarose Nanofibers and Polyacrylamide.
    Guo J; Zhang R; Zhang L; Cao X
    ACS Macro Lett; 2018 Apr; 7(4):442-446. PubMed ID: 35619340
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Shape-Morphing Antenna Array by 4D-Printed Multimaterial Miura Origami.
    Park S; Park E; Lee M; Lim S
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49843-49853. PubMed ID: 37842825
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3D and 4D assembly of functional structures using shape-morphing materials for biological applications.
    Mirzababaei S; Towery LAK; Kozminsky M
    Front Bioeng Biotechnol; 2024; 12():1347666. PubMed ID: 38605991
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cold-programmed shape-morphing structures based on grayscale digital light processing 4D printing.
    Yue L; Sun X; Yu L; Li M; Montgomery SM; Song Y; Nomura T; Tanaka M; Qi HJ
    Nat Commun; 2023 Sep; 14(1):5519. PubMed ID: 37684245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.