BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38100561)

  • 1. Construction of a Stable Expression System Based on the Endogenous
    Ren K; Zhao Y; Chen GQ; Ao X; Wu Q
    ACS Synth Biol; 2024 Jan; 13(1):61-67. PubMed ID: 38100561
    [No Abstract]   [Full Text] [Related]  

  • 2. Construction of Halomonas bluephagenesis capable of high cell density growth for efficient PHA production.
    Ren Y; Ling C; Hajnal I; Wu Q; Chen GQ
    Appl Microbiol Biotechnol; 2018 May; 102(10):4499-4510. PubMed ID: 29623388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Halomonas bluephagenesis for L-Threonine production.
    Du H; Zhao Y; Wu F; Ouyang P; Chen J; Jiang X; Ye J; Chen GQ
    Metab Eng; 2020 Jul; 60():119-127. PubMed ID: 32315761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reprogramming Halomonas for industrial production of chemicals.
    Chen X; Yu L; Qiao G; Chen GQ
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):545-554. PubMed ID: 29948194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of functional polyhydroxyalkanoates by engineered Halomonas bluephagenesis.
    Yu LP; Yan X; Zhang X; Chen XB; Wu Q; Jiang XR; Chen GQ
    Metab Eng; 2020 May; 59():119-130. PubMed ID: 32119929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Halomonas spp., as chassis for low-cost production of chemicals.
    Chen GQ; Zhang X; Liu X; Huang W; Xie Z; Han J; Xu T; Mitra R; Zhou C; Zhang J; Chen T
    Appl Microbiol Biotechnol; 2022 Nov; 106(21):6977-6992. PubMed ID: 36205763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deficiency of exopolysaccharides and O-antigen makes Halomonas bluephagenesis self-flocculating and amenable to electrotransformation.
    Xu T; Chen J; Mitra R; Lin L; Xie Z; Chen GQ; Xiang H; Han J
    Commun Biol; 2022 Jun; 5(1):623. PubMed ID: 35750760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Halomonas and Pathway Engineering for Bioplastics Production.
    Xiao-Ran J; Jin Y; Xiangbin C; Guo-Qiang C
    Methods Enzymol; 2018; 608():309-328. PubMed ID: 30173767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering low-salt growth Halomonas Bluephagenesis for cost-effective bioproduction combined with adaptive evolution.
    Zhang L; Lin Y; Yi X; Huang W; Hu Q; Zhang Z; Wu F; Ye JW; Chen GQ
    Metab Eng; 2023 Sep; 79():146-158. PubMed ID: 37543135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering NADH/NAD
    Ling C; Qiao GQ; Shuai BW; Olavarria K; Yin J; Xiang RJ; Song KN; Shen YH; Guo Y; Chen GQ
    Metab Eng; 2018 Sep; 49():275-286. PubMed ID: 30219528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete genome sequence of the halophilic PHA-producing bacterium Halomonas sp. SF2003: insights into its biotechnological potential.
    Thomas T; Elain A; Bazire A; Bruzaud S
    World J Microbiol Biotechnol; 2019 Mar; 35(3):50. PubMed ID: 30852675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas9 assisted non-homologous end joining genome editing system of Halomonas bluephagenesis for large DNA fragment deletion.
    Liu C; Yue Y; Xue Y; Zhou C; Ma Y
    Microb Cell Fact; 2023 Oct; 22(1):211. PubMed ID: 37838676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Next-Generation Industrial Biotechnology-Transforming the Current Industrial Biotechnology into Competitive Processes.
    Yu LP; Wu FQ; Chen GQ
    Biotechnol J; 2019 Sep; 14(9):e1800437. PubMed ID: 30927495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PHB production from food waste hydrolysates by Halomonas bluephagenesis Harboring PHB operon linked with an essential gene.
    Ji M; Zheng T; Wang Z; Lai W; Zhang L; Zhang Q; Yang H; Meng S; Xu W; Zhao C; Wu Q; Chen GQ
    Metab Eng; 2023 May; 77():12-20. PubMed ID: 36889504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ectoine hyperproduction by engineered Halomonas bluephagenesis.
    Hu Q; Sun S; Zhang Z; Liu W; Yi X; He H; Scrutton NS; Chen GQ
    Metab Eng; 2024 Mar; 82():238-249. PubMed ID: 38401747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flux optimization using multiple promoters in Halomonas bluephagenesis as a model chassis of the next generation industrial biotechnology.
    Ma Y; Ye JW; Lin Y; Yi X; Wang X; Wang H; Huang R; Wu F; Wu Q; Liu X; Chen GQ
    Metab Eng; 2024 Jan; 81():249-261. PubMed ID: 38159902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV).
    Chen Y; Chen XY; Du HT; Zhang X; Ma YM; Chen JC; Ye JW; Jiang XR; Chen GQ
    Metab Eng; 2019 Jul; 54():69-82. PubMed ID: 30914380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unlocking growth potential in Halomonas bluephagenesis for enhanced PHA production with sulfate ions.
    Yao F; Yuan K; Zhou W; Tang W; Tang T; Yang X; Liu H; Li F; Xu Q; Peng C
    J Ind Microbiol Biotechnol; 2024 Jan; 51():. PubMed ID: 38632039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of polyhydroxyalkanoates by engineered Halomonas bluephagenesis using starch as a carbon source.
    Liu Y; Song X; Yang W; Wang M; Lian G; Li ZJ
    Int J Biol Macromol; 2024 Mar; 261(Pt 2):129838. PubMed ID: 38307428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the permeability of Halomonas bluephagenesis enhanced its chassis properties.
    Wang Z; Qin Q; Zheng Y; Li F; Zhao Y; Chen GQ
    Metab Eng; 2021 Sep; 67():53-66. PubMed ID: 34098101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.