BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38100857)

  • 1. A clean process for the recovery of rare earth and transition metals from NiMH battery based on primary amine and lauric acid.
    Zhang S; Ni S; Zeng Z; Yu G; Huang B; Sun X
    J Environ Manage; 2024 Feb; 351():119788. PubMed ID: 38100857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of spent nickel-metal hydride batteries and a preliminary economic evaluation of the recovery processes.
    Lin SL; Huang KL; Wang IC; Chou IC; Kuo YM; Hung CH; Lin C
    J Air Waste Manag Assoc; 2016 Mar; 66(3):296-306. PubMed ID: 26651506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction and Back-Extraction Behaviors of La(III), Ce(III), Pr(III), and Nd(III) Single Rare Earth and Mixed Rare Earth by TODGA.
    Qiu L; Li J; Zhang W; Gong A; Yuan X; Liu Y
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960409
    [No Abstract]   [Full Text] [Related]  

  • 4. Valorization of waste NiMH battery through recovery of critical rare earth metal: A simple recycling process for the circular economy.
    Ahn NK; Shim HW; Kim DW; Swain B
    Waste Manag; 2020 Mar; 104():254-261. PubMed ID: 31991266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries.
    Meshram P; Pandey BD; Mankhand TR
    Waste Manag; 2016 May; 51():196-203. PubMed ID: 26746588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green separation of lanthanum, cerium and nickel from waste nickel metal hydride battery.
    Vargas SJR; Schaeffer N; Souza JC; da Silva LHM; Hespanhol MC
    Waste Manag; 2021 Apr; 125():154-162. PubMed ID: 33706254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a functionalized ionic liquid extractant tributylmethylammonium dibutyldiglycolamate ([A336][BDGA]) in light rare earth extraction and separation.
    Qiu L; Pan Y; Zhang W; Gong A
    PLoS One; 2018; 13(8):e0201405. PubMed ID: 30138315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact on global metal flows arising from the use of portable rechargeable batteries.
    Rydh CJ; Svärd B
    Sci Total Environ; 2003 Jan; 302(1-3):167-84. PubMed ID: 12526907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. REE(III) recovery from spent NiMH batteries as REE double sulfates and their simultaneous hydrolysis and wet-oxidation.
    Porvali A; Agarwal V; Lundström M
    Waste Manag; 2020 Apr; 107():66-73. PubMed ID: 32278217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of Rare-Earth Elements from Nitrate Solutions by Solvent Extraction Using Mixtures of Methyltri-n-octylammonium Nitrate and Tri-n-butyl Phosphate.
    Stepanov SI; Hoa NTY; Boyarintseva EV; Boyarintsev AV; Kostikova GV; Tsivadze AY
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system.
    Yang F; Kubota F; Baba Y; Kamiya N; Goto M
    J Hazard Mater; 2013 Jun; 254-255():79-88. PubMed ID: 23587931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaching of rare earth elements and base metals from spent NiMH batteries using gluconate and its potential bio-oxidation products.
    Rasoulnia P; Barthen R; Puhakka JA; Lakaniemi AM
    J Hazard Mater; 2021 Jul; 414():125564. PubMed ID: 33684819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient separation of transition metals from rare earths by an undiluted phosphonium thiocyanate ionic liquid.
    Rout A; Binnemans K
    Phys Chem Chem Phys; 2016 Jun; 18(23):16039-45. PubMed ID: 27243450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of metals and rare earth elements leaching from spent Ni-MH batteries by response surface methodology.
    Otron AMA; Millogo TJF; Tran LH; Blais JF
    Environ Technol; 2023 Aug; ():1-13. PubMed ID: 37524656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A HNO
    Schaeffer N; Vargas SJR; Passos H; Brandão P; Nogueira HIS; Svecova L; Papaiconomou ; Coutinho JAP
    ChemSusChem; 2021 Jul; 14(14):3018-3026. PubMed ID: 34087058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of rare earths from transition metals by liquid-liquid extraction from a molten salt hydrate to an ionic liquid phase.
    Rout A; Binnemans K
    Dalton Trans; 2014 Feb; 43(8):3186-95. PubMed ID: 24352299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An eco-friendly and high-yield extraction of rare earth from the leaching solution of ion adsorbed minerals.
    Yu G; Zhang H; Tian Z; Gao Y; Fu X; Sun X
    J Hazard Mater; 2024 Jul; 473():134633. PubMed ID: 38772109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multistep pH-peak-focusing liquid chromatography with a hydrophilic polymer gel column for separation of rare earth elements.
    Shibukawa M; Onoyama Y; Handa-Tasaki Y; Saito S
    J Chromatogr A; 2024 Apr; 1721():464829. PubMed ID: 38522404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of fatty acid-based ammonium ionic liquids and their application for extraction of Co(II) and Ni(II) metals ions from aqueous solution.
    Raj T; Chandrasekhar K; Park J; Varjani S; Sharma P; Kumar D; Yoon JJ; Pandey A; Kim SH
    Chemosphere; 2022 Nov; 307(Pt 2):135787. PubMed ID: 35872060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Construction of a Microbial Synthesis System for Rare Earth Enrichment and Material Applications.
    Cui H; Zhang X; Chen J; Qian X; Zhong Y; Ma C; Zhang H; Liu K
    Adv Mater; 2023 Aug; 35(33):e2303457. PubMed ID: 37243571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.