These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38101009)

  • 21. Proteomic analysis as a tool for investigating arsenic stress in Pteris vittata roots colonized or not by arbuscular mycorrhizal symbiosis.
    Bona E; Marsano F; Massa N; Cattaneo C; Cesaro P; Argese E; Sanità di Toppi L; Cavaletto M; Berta G
    J Proteomics; 2011 Aug; 74(8):1338-50. PubMed ID: 21457805
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L.
    Wu FY; Ye ZH; Wong MH
    Chemosphere; 2009 Aug; 76(9):1258-64. PubMed ID: 19535126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Treating carbon-limited wastewater by DWTR and woodchip augmented floating constructed wetlands.
    Shen C; Zhao Y; Li Y; Liu R; Wang J; Yang Y
    Chemosphere; 2021 Dec; 285():131331. PubMed ID: 34237501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.).
    Al Agely A; Sylvia DM; Ma LQ
    J Environ Qual; 2005; 34(6):2181-6. PubMed ID: 16275719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing wastewater remediation by drinking water treatment residual-augmented floating treatment wetlands.
    Shen C; Zhao YQ; Liu RB; Morgan D; Wei T
    Sci Total Environ; 2019 Jul; 673():230-236. PubMed ID: 30991314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential use of arbuscular mycorrhizal fungi for simultaneous mitigation of arsenic and cadmium accumulation in rice.
    Li H; Gao MY; Mo CH; Wong MH; Chen XW; Wang JJ
    J Exp Bot; 2022 Jan; 73(1):50-67. PubMed ID: 34610119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arbuscular mycorrhizal fungi colonization and physiological functions toward wetland plants under different water regimes.
    Hu S; Chen Z; Vosátka M; Vymazal J
    Sci Total Environ; 2020 May; 716():137040. PubMed ID: 32044486
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L.
    Liu Y; Zhu YG; Chen BD; Christie P; Li XL
    Mycorrhiza; 2005 May; 15(3):187-92. PubMed ID: 15309589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and impact of root-associated fungi in treatment wetland mesocosms.
    Tondera K; Chazarenc F; Brisson J; Chagnon PL
    Sci Total Environ; 2023 Feb; 858(Pt 3):159958. PubMed ID: 36343819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diverse and abundant arbuscular mycorrhizal fungi in ecological floating beds used to treat eutrophic water.
    Xu Z; Lv Y; Fang M; Liu J; Zeng H; Ban Y
    Appl Microbiol Biotechnol; 2021 Sep; 105(18):6959-6975. PubMed ID: 34432133
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving the removal efficiency of nitrogen and organics in vertical-flow constructed wetlands: the correlation of substrate, aeration and microbial activity.
    Xu W; Yang B; Wang H; Wang S; Jiao K; Zhang C; Li F; Wang H
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):21683-21693. PubMed ID: 36274076
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ceramsite made from drinking water treatment residue for water treatment: A critical review in association with typical ceramsite making.
    Huang C; Yuan N; He X; Wang C
    J Environ Manage; 2023 Feb; 328():117000. PubMed ID: 36502704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioaugmentation of treatment wetlands - A review.
    Tondera K; Chazarenc F; Chagnon PL; Brisson J
    Sci Total Environ; 2021 Jun; 775():145820. PubMed ID: 33618303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of arbuscular mycorrhizal fungi and phosphate amendement on arsenic uptake, accumulation and growth of Pteris vittata in As-contaminated soil.
    Leung HM; Wu FY; Cheung KC; Ye ZH; Wong MH
    Int J Phytoremediation; 2010; 12(4):384-403. PubMed ID: 20734915
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils.
    Leung HM; Ye ZH; Wong MH
    Environ Pollut; 2006 Jan; 139(1):1-8. PubMed ID: 16039023
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ignored diversity of arbuscular mycorrhizal fungi in co-occurring mycotrophic and non-mycotrophic plants.
    Wang Y; Li Y; Li S; Rosendahl S
    Mycorrhiza; 2021 Jan; 31(1):93-102. PubMed ID: 33140218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteomic analysis of Pteris vittata fronds: two arbuscular mycorrhizal fungi differentially modulate protein expression under arsenic contamination.
    Bona E; Cattaneo C; Cesaro P; Marsano F; Lingua G; Cavaletto M; Berta G
    Proteomics; 2010 Nov; 10(21):3811-34. PubMed ID: 20957753
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antioxidant response in arbuscular mycorrhizal fungi inoculated wetland plant under Cr stress.
    Hu S; Hu B; Chen Z; Vosátka M; Vymazal J
    Environ Res; 2020 Dec; 191():110203. PubMed ID: 32946894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arbuscular mycorrhizal fungi reduce arsenic uptake and improve plant growth in Lens culinaris.
    Alam MZ; Hoque MA; Ahammed GJ; Carpenter-Boggs L
    PLoS One; 2019; 14(5):e0211441. PubMed ID: 31095573
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi.
    Chan WF; Li H; Wu FY; Wu SC; Wong MH
    J Hazard Mater; 2013 Nov; 262():1116-22. PubMed ID: 22940287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.