These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38101048)

  • 21. Unlocking High-Salinity Desalination with Cascading Osmotically Mediated Reverse Osmosis: Energy and Operating Pressure Analysis.
    Chen X; Yip NY
    Environ Sci Technol; 2018 Feb; 52(4):2242-2250. PubMed ID: 29357240
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The microbial growth potential of antiscalants used in seawater desalination.
    Hasanin G; Mosquera AM; Emwas AH; Altmann T; Das R; Buijs PJ; Vrouwenvelder JS; Gonzalez-Gil G
    Water Res; 2023 Apr; 233():119802. PubMed ID: 36871379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of feed salinity on the biofouling dynamics of seawater desalination.
    Yang HL; Pan JR; Huang C; Lin JC
    Biofouling; 2011 May; 27(5):561-7. PubMed ID: 21644114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visible light-promoted anti-biofouling performance of cellulose acetate membrane for reverse osmosis desalination.
    Zhang H; Chen H; Zhou Q; Wen X; Wang J; Li Q; Liu HB
    Int J Biol Macromol; 2024 Mar; 262(Pt 2):130196. PubMed ID: 38360223
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functionalization of reverse osmosis membrane with graphene oxide and polyacrylic acid to control biofouling and mineral scaling.
    Ashfaq MY; Al-Ghouti MA; Zouari N
    Sci Total Environ; 2020 Sep; 736():139500. PubMed ID: 32479964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reverse osmosis desalination: water sources, technology, and today's challenges.
    Greenlee LF; Lawler DF; Freeman BD; Marrot B; Moulin P
    Water Res; 2009 May; 43(9):2317-48. PubMed ID: 19371922
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacterial growth through microfiltration membranes and NOM characteristics in an MF-RO integrated membrane system: Lab-scale and full-scale studies.
    Park JW; Lee YJ; Meyer AS; Douterelo I; Maeng SK
    Water Res; 2018 Nov; 144():36-45. PubMed ID: 30014977
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.
    Bucs SS; Valladares Linares R; van Loosdrecht MC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():227-42. PubMed ID: 25282091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inorganic fouling mitigation by salinity cycling in batch reverse osmosis.
    Warsinger DM; Tow EW; Maswadeh LA; Connors GB; Swaminathan J; Lienhard V JH
    Water Res; 2018 Jun; 137():384-394. PubMed ID: 29573825
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of anti-biofouling feed spacers to improve performance of reverse osmosis modules.
    Rice D; Barrios AC; Xiao Z; Bogler A; Bar-Zeev E; Perreault F
    Water Res; 2018 Nov; 145():599-607. PubMed ID: 30199804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. UTEP-EPW university-utility partnership: Concentrate enhanced-recovery reverse osmosis process for high water recovery from silica-saturated desalination concentrates.
    Tarquin A; Walker WS; Delgado G; Bustamante A
    Water Environ Res; 2020 Mar; 92(3):369-377. PubMed ID: 31276246
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination.
    Yang HL; Lin JC; Huang C
    Water Res; 2009 Aug; 43(15):3777-86. PubMed ID: 19586651
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impaired Performance of Pressure-Retarded Osmosis due to Irreversible Biofouling.
    Bar-Zeev E; Perreault F; Straub AP; Elimelech M
    Environ Sci Technol; 2015 Nov; 49(21):13050-8. PubMed ID: 26426100
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of biofouling by xanthine oxidase on seawater reverse osmosis membranes from a desalination plant: enzyme production and screening of bacterial isolates from the full-scale plant.
    Nagaraj V; Skillman L; Li D; Xie Z; Ho G
    Lett Appl Microbiol; 2017 Jul; 65(1):73-81. PubMed ID: 28418590
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reducing the specific energy consumption of 1st-pass SWRO by application of high-flux membranes fed with high-pH, decarbonated seawater.
    Ophek L; Birnhack L; Nir O; Binshtein E; Lahav O
    Water Res; 2015 Nov; 85():185-92. PubMed ID: 26318651
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antiscalants in RO membrane scaling control.
    Yu W; Song D; Chen W; Yang H
    Water Res; 2020 Sep; 183():115985. PubMed ID: 32619802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of isolated dissolved organic fractions from seawater on biofouling in reverse osmosis (RO) desalination process.
    Yin W; Ho JS; Cornelissen ER; Chong TH
    Water Res; 2020 Jan; 168():115198. PubMed ID: 31654961
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of cost and energy effective seawater membranes for use under hot climate conditions.
    Shaaban S; Yahya H
    Water Environ Res; 2022 Jul; 94(7):e10758. PubMed ID: 35770870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biofouling potential reductions using a membrane hybrid system as a pre-treatment to seawater reverse osmosis.
    Jeong S; Kim LH; Kim SJ; Nguyen TV; Vigneswaran S; Kim IS
    Appl Biochem Biotechnol; 2012 Jul; 167(6):1716-27. PubMed ID: 22238012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduction of biofouling potential in cartridge filter by using chlorine dioxide for enhancing anti-biofouling of seawater reverse osmosis membrane.
    Song M; Im SJ; Jeong D; Jang A
    Environ Res; 2020 Jan; 180():108866. PubMed ID: 31703977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.