These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 38101609)

  • 81. Allosteric Inhibitors of SHP2: An Updated Patent Review (2015-2020).
    Wu J; Zhang H; Zhao G; Wang R
    Curr Med Chem; 2021; 28(19):3825-3842. PubMed ID: 32988341
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Shp2 deletion in hepatocytes suppresses hepatocarcinogenesis driven by oncogenic β-Catenin, PIK3CA and MET.
    Liu JJ; Li Y; Chen WS; Liang Y; Wang G; Zong M; Kaneko K; Xu R; Karin M; Feng GS
    J Hepatol; 2018 Jul; 69(1):79-88. PubMed ID: 29505847
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Chlorpromazine cooperatively induces apoptosis with tyrosine kinase inhibitors in EGFR-mutated lung cancer cell lines and restores the sensitivity to gefitinib in T790M-harboring resistant cells.
    Fujiwara R; Taniguchi Y; Rai S; Iwata Y; Fujii A; Fujimoto K; Kumode T; Serizawa K; Morita Y; Espinoza JL; Tanaka H; Hanamoto H; Matsumura I
    Biochem Biophys Res Commun; 2022 Oct; 626():156-166. PubMed ID: 35994825
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Strategies to overcome acquired resistance to EGFR TKI in the treatment of non-small cell lung cancer.
    Gao J; Li HR; Jin C; Jiang JH; Ding JY
    Clin Transl Oncol; 2019 Oct; 21(10):1287-1301. PubMed ID: 30864018
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Resistance to RET-Inhibition in RET-Rearranged NSCLC Is Mediated By Reactivation of RAS/MAPK Signaling.
    Nelson-Taylor SK; Le AT; Yoo M; Schubert L; Mishall KM; Doak A; Varella-Garcia M; Tan AC; Doebele RC
    Mol Cancer Ther; 2017 Aug; 16(8):1623-1633. PubMed ID: 28500237
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Acquired Resistance to Third-Generation EGFR Tyrosine Kinase Inhibitors in Patients With De Novo EGFR
    Park HR; Kim TM; Lee Y; Kim S; Park S; Ju YS; Kim M; Keam B; Jeon YK; Kim DW; Heo DS
    J Thorac Oncol; 2021 Nov; 16(11):1859-1871. PubMed ID: 34242789
    [TBL] [Abstract][Full Text] [Related]  

  • 87. SHP2 inhibitor specifically suppresses the stemness of KRAS-mutant non-small cell lung cancer cells.
    Jiang L; Xu W; Chen Y; Zhang Y
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):3231-3238. PubMed ID: 31373232
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Developing SHP2-based combination therapy for KRAS-amplified cancer.
    Li T; Kikuchi O; Zhou J; Wang Y; Pokharel B; Bastl K; Gokhale P; Knott A; Zhang Y; Doench JG; Ho ZV; Catenacci DV; Bass AJ
    JCI Insight; 2023 Feb; 8(3):. PubMed ID: 36752207
    [TBL] [Abstract][Full Text] [Related]  

  • 89. P21-activated kinase 2-mediated β-catenin signaling promotes cancer stemness and osimertinib resistance in EGFR-mutant non-small-cell lung cancer.
    Yi Y; Li P; Huang Y; Chen D; Fan S; Wang J; Yang M; Zeng S; Deng J; Lv X; Luo K; He Z; Liu H
    Oncogene; 2022 Sep; 41(37):4318-4329. PubMed ID: 35986102
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Src homology phosphotyrosyl phosphatase 2 mediates cisplatin-related drug resistance by inhibiting apoptosis and activating the Ras/PI3K/Akt1/survivin pathway in lung cancer cells.
    Tang C; Luo H; Luo D; Yang H; Zhou X
    Oncol Rep; 2018 Feb; 39(2):611-618. PubMed ID: 29207183
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Reactivation of Mutant-EGFR Degradation through Clathrin Inhibition Overcomes Resistance to EGFR Tyrosine Kinase Inhibitors.
    Ménard L; Floc'h N; Martin MJ; Cross DAE
    Cancer Res; 2018 Jun; 78(12):3267-3279. PubMed ID: 29555874
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A specific amino acid context in EGFR and HER2 phosphorylation sites enables selective binding to the active site of Src homology phosphatase 2 (SHP2).
    Hartman Z; Geldenhuys WJ; Agazie YM
    J Biol Chem; 2020 Mar; 295(11):3563-3575. PubMed ID: 32024694
    [TBL] [Abstract][Full Text] [Related]  

  • 93. MERTK Promotes Resistance to Irreversible EGFR Tyrosine Kinase Inhibitors in Non-small Cell Lung Cancers Expressing Wild-type
    Yan D; Parker RE; Wang X; Frye SV; Earp HS; DeRyckere D; Graham DK
    Clin Cancer Res; 2018 Dec; 24(24):6523-6535. PubMed ID: 30194074
    [TBL] [Abstract][Full Text] [Related]  

  • 94.
    Valencia-Sama I; Ladumor Y; Kee L; Adderley T; Christopher G; Robinson CM; Kano Y; Ohh M; Irwin MS
    Cancer Res; 2020 Aug; 80(16):3413-3423. PubMed ID: 32586982
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Exploring the resistance mechanisms of second-line osimertinib and their prognostic implications using next-generation sequencing in patients with non-small-cell lung cancer.
    Lee K; Kim D; Yoon S; Lee DH; Kim SW
    Eur J Cancer; 2021 May; 148():202-210. PubMed ID: 33744716
    [TBL] [Abstract][Full Text] [Related]  

  • 96. MET and AXL inhibitor NPS-1034 exerts efficacy against lung cancer cells resistant to EGFR kinase inhibitors because of MET or AXL activation.
    Rho JK; Choi YJ; Kim SY; Kim TW; Choi EK; Yoon SJ; Park BM; Park E; Bae JH; Choi CM; Lee JC
    Cancer Res; 2014 Jan; 74(1):253-62. PubMed ID: 24165158
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Enhanced ABL-inhibitor-induced MAPK-activation in T315I-BCR-ABL-expressing cells: a potential mechanism of altered leukemogenicity.
    Härtel N; Klag T; Hanfstein B; Mueller MC; Schenk T; Erben P; Hochhaus A; La Rosée P
    J Cancer Res Clin Oncol; 2012 Feb; 138(2):203-12. PubMed ID: 22089930
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Acquired Resistance of MET-Amplified Non-small Cell Lung Cancer Cells to the MET Inhibitor Capmatinib.
    Kim S; Kim TM; Kim DW; Kim S; Kim M; Ahn YO; Keam B; Heo DS
    Cancer Res Treat; 2019 Jul; 51(3):951-962. PubMed ID: 30309221
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Broad RTK-targeted therapy overcomes molecular heterogeneity-driven resistance to cetuximab via vectored immunoprophylaxis in colorectal cancer.
    Hu S; Dai H; Li T; Tang Y; Fu W; Yuan Q; Wang F; Lv G; Lv Y; Fan X; Zhang S; Jin R; Shen Y; Lin F; Ye X; Ding M; Yang Y; Lei C
    Cancer Lett; 2016 Nov; 382(1):32-43. PubMed ID: 27569653
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Fragment-Based Discovery of Allosteric Inhibitors of SH2 Domain-Containing Protein Tyrosine Phosphatase-2 (SHP2).
    Day JEH; Berdini V; Castro J; Chessari G; Davies TG; Day PJ; St Denis JD; Fujiwara H; Fukaya S; Hamlett CCF; Hearn K; Hiscock SD; Holvey RS; Ito S; Kandola N; Kodama Y; Liebeschuetz JW; Martins V; Matsuo K; Mortenson PN; Muench S; Nakatsuru Y; Ochiiwa H; Palmer N; Peakman T; Price A; Reader M; Rees DC; Rich SJ; Shah A; Shibata Y; Smyth T; Twigg DG; Wallis NG; Williams G; Wilsher NE; Woodhead A; Shimamura T; Johnson CN
    J Med Chem; 2024 Mar; 67(6):4655-4675. PubMed ID: 38462716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.